ANÁLISES GENÔMICAS DE BACTÉRIAS DO GÊNERO Azospirillum

ISABELLA DE OLIVEIRA PINHEIRO

CAMPOS DOS GOYTACAZES

ANÁLISES GENÔMICAS DE BACTÉRIAS DO GÊNERO Azospirillum

ISABELLA DE OLIVEIRA PINHEIRO

Dissertação apresentada ao Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Mestre em Biotecnologia Vegetal.

Orientador: Dr. Thiago Motta Venancio Coorientador: Dr. Francisnei Pedrosa da Silva

Campos dos Goytacazes 2023

FICHA CATALOGRÁFICA UENF - Bibliotecas

Elaborada com os dados fornecidos pela autora.

 P654 Pinheiro, Isabella de Oliveira.
 Análises genômicas de bactérias do gênero Azospirillum / Isabella de Oliveira Pinheiro. - Campos dos Goytacazes, RJ, 2023.
 96 f. : il. Inclui bibliografia.
 Dissertação (Mestrado em Biotecnologia Vegetal) - Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, 2023. Orientador: Thiago Motta Venancio. Coorientador: Francisnei Pedrosa da Silva.

> bioestimulação. 2. biofertilização. 3. biorremediação. 4. Bactérias Promotoras do Crescimento Vegetal. 5. genômica comparativa. I. Universidade Estadual do Norte Fluminense Darcy Ribeiro. II. Título.

> > CDD - 660.6

ANÁLISES GENÔMICAS EM BACTÉRIAS DO GÊNERO Azospirillum

ISABELLA DE OLIVEIRA PINHEIRO

Dissertação apresentada ao Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Mestre em Biotecnologia Vegetal.

Aprovada em 27 de novembro, 2023

Banca Examinadora:

2 mttill

Dr. Thiago Motta Venancio - UENF (Orientador)

Dr. Francisnei Predrosa da Silva - UENF (Coorientador)

2/

Dr. Sandcep Tiwari - UFBA

Dr. Sara Sangi Miranda - UENF

Dr. Vitor Batista Pinto - UENF

Governo do Estado do Rio de Janeiro Universidade Estadual do Norte Fluminense Darcy Ribeiro Diretoria do Centro de Biociências e Biotecnologia

DECLARAÇÃO

Declaro para os devidos fins que a versão final da dissertação de mestrado intitulada "ANÁLISES GENÔMICAS DE BACTÉRIAS DO GÊNERO Azospirillum", da discente Isabella de Oliveira Pinheiro, foi aprovada pelos pelos membros da banca impossibilitados de assinar presencialmente o documento.

Campos dos Goytacazes, 23 janeiro de 2024

Thiago Motta Venancio Professor Associado - LQFPP/CBB/UENF ID. Funcional: 6412009

Documento assinado eletronicamente por Thiago Motta Venâncio, Professor, em 23/01/2024, às 08:37, conforme horário oficial de Brasília, com fundamento nos art. 28º e 29º do <u>Decreto nº 48.209</u>, de 19 de setembro de 2022.

A autenticidade deste documento pode ser conferida no site
http://sei.rj.gov.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=6, informando o código verificador 67319592 e
o código CRC 0C5FD506.

Referência: Processo nº SEI-260002/000012/2024

SEI nº 67319592

Avenida Alberto Lamego, 2000, - Bairro Pq. Califórnia, Campos dos Goytacazes/RJ, CEP 28013-602 Telefone: - www.uenf.br

Declaração 67319592 SEI SEI-260002/000012/2024 / pg. 1

DEDICATÓRIA

À Anna, Roseli, Kristal e Sophia.

AGRADECIMENTOS

À minha família, especialmente aos meus pais, Roseli e Maurício, por seu amor incondicional, suporte e compreensão ao longo dos meus estudos, que foram fundamentais em minha jornada acadêmica.

Ao meu orientador, Thiago Venancio, expresso minha sincera gratidão. Sua orientação, paciência e credibilidade na minha pesquisa foram cruciais para o desenvolvimento deste trabalho. Da mesma forma, gostaria de agradecer ao meu coorientador e amigo, Francisnei Pedrosa, por sua atenção, acolhimento e pelos valiosos conselhos e ensinamentos ao longo deste processo.

Aos colegas de laboratório, Dayana, Sarah, Kevelin, Benício, Fabrício e Hemanoel, desejo expressar minha sincera gratidão pelo convívio, colaboração e companheirismo que compartilhamos ao longo dos anos de pesquisa. Assim como aos meus amigos, Sara, Luiz e Gabriel, quero estender minha profunda gratidão por seu apoio constante e por permanecerem ao meu lado durante uma das fases mais desafiadoras desta jornada acadêmica.

À comunidade acadêmica da Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), incluindo o corpo docente, a administração e todos os envolvidos no Programa de Pós-Graduação em Biotecnologia Vegetal, gostaria de agradecer pela contribuição para a minha formação. Seu apoio e recursos foram fundamentais para a conclusão deste trabalho.

Por fim, desejo expressar minha gratidão à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão da bolsa de estudos, que tornou possível a minha dedicação integral a esta pesquisa.

Cada um de vocês desempenhou um papel fundamental em minha jornada acadêmica, e sou profundamente grata. Este trabalho é o resultado de um esforço coletivo e reflete a generosidade, orientação e estímulo de todos vocês.

RESUMO

Para garantir segurança alimentar e sustentabilidade ambiental, abordagens alternativas, como os inoculantes agrícolas, vêm ganhando destaque nas últimas décadas. O desempenho positivo na aplicação desses produtos baseia-se na disponibilização de nutrientes e estimulação do crescimento vegetal por microrganismos, como bactérias. Dentre as mais estudadas por essa capacidade, destacam-se algumas espécies pertencentes ao gênero Azospirillum, presentes em uma ampla variedade de formulações agrícolas. Apesar da sua importância biotecnológica, ainda são escassos os estudos que avaliem e comparem a diversidade genômica presente no gênero. Logo, este estudo visa identificar novas espécies com potencial agronômico através da análise e comparação do conteúdo gênico relacionado a mecanismos de biofertilização, bioestimulação e biorremediação em genomas de Azospirillum. Foram obtidos 180 genomas da família Azospirillaceae disponíveis no GenBank. Os genomas de Azospirillum foram selecionados com Mash e classificados de acordo com a identidade média de nucleotídeos (ANI > 95%). O pangenoma foi determinado com o Roary, e SNPs do pangenoma central foram utilizados para reconstruir a filogenia com o IQ-TREE. Para avaliar virulência e resistência, consultamos os bancos de dados VFDB e CARD, e identificamos os genes de interesse biotecnológico utilizando o PLaBAse. Como resultado, identificamos 63 genomas para Azospirillum. O gênero exibe uma alta diversidade entre as espécies, visível através de seu pangenoma aberto. A análise filogenética revelou cinco clados (I a V), com isolados predominantemente associados a vegetais. O viruloma incluiu 58 genes, sendo 20 centrais associados à evasão imunológica e estresse ambiental. O resistoma central apresentou apenas 3 genes, e 31 genes acessórios relacionados principalmente a sistemas de bombas de efluxo. Os genes de biofertilização estavam relacionados ao metabolismo de nitrogênio, fósforo, potássio e ferro, e os de bioestimulação incluíam auxina e citocinina. Identificamos genes de tolerância a metais traço e ao metabolismo de hidrocarbonetos. A análise indicou uma maior variedade de mecanismos promotores para o clado III, enquanto o clado IV apresentou genes de importância biotecnológica, como aqueles envolvidos na fixação do nitrogênio e na síntese de auxina. Cepas dos clados II e V mostraram-se correlacionadas à capacidade de metabolizar intermediários das vias de degradação de compostos aromáticos. Esses resultados destacam a diversidade de mecanismos no gênero Azospirillum, abrindo caminho para explorar seu potencial agronômico em bioinoculantes.

Palavras-chave: bioestimulação; biofertilização; biorremediação; Bactérias Promotoras do Crescimento Vegetal; genômica comparativa.

ABSTRACT

To ensure food security and environmental sustainability, alternative approaches, such as agricultural inoculants, have been gaining prominence in recent decades. The positive performance in the application of these products is based on the availability of nutrients and stimulation of plant growth by microorganisms, such as bacteria. Among the most studied for this capacity, some species belonging to the genus Azospirillum stand out, present in a wide variety of agricultural formulations. Despite its biotechnological importance, there are still few studies that evaluate and compare the genomic diversity present in the genus. Therefore, this study aims to identify new species with agronomic potential through the analysis and comparison of gene content related to biofertilization, biostimulation and bioremediation mechanisms in Azospirillum genomes. 180 genomes from the Azospirillaceae family available in GenBank were obtained. Azospirillum genomes were selected with Mash and classified according to average nucleotide identity (ANI > 95%). The pangenome was determined with Roary, and SNPs from the core pangenome were used to reconstruct the phylogeny with IQ-TREE. To assess virulence and resistance, we consulted the VFDB and CARD databases, and identified genes of biotechnological interest using PLaBAse. As a result, we identified 63 genomes for Azospirillum. The genus exhibits high diversity among species, visible through its open pangenome. Phylogenetic analysis revealed five clades (I to V), with isolates predominantly associated with plants. The virulome included 58 genes, with 20 central ones associated with immune evasion and environmental stress. The central resistome presented only 3 genes, and 31 accessory genes mainly related to efflux pump systems. Biofertilization genes were related to nitrogen, phosphorus, potassium and iron metabolism, and biostimulation genes included auxin and cytokinin. We identified genes for tolerance to trace metals and hydrocarbon metabolism. The analysis indicated a greater variety of promoter mechanisms for clade III, while clade IV presented genes of biotechnological importance, such as those involved in nitrogen fixation and auxin synthesis. Strains from clades II and V were shown to be correlated with the ability to metabolize intermediates in the aromatic compound degradation pathways. These results highlight the diversity of mechanisms in the genus Azospirillum, paving the way to explore its agronomic potential in bioinoculants.

Keywords: biostimulation; biofertilization; bioremediation; Plant growth-promoting bacteria; comparative genomics.

LISTA DE ILUSTRAÇÕES

Figura 10 - Composição do resistoma acessório. Genes presentes em azul, enquanto os
localizados em ilhas genômicas e plasmídeos estão destacados em amarelo e rosa claro,
respectivamente
Figura 11 - Análise de enriquecimento dos mecanismos de biofertilização, bioestimulação e
biorremediação em Azospirillum. As características enriquecidas estão representadas em
vermelho e as esgotadas em azul50
Figura 12 - Frequência relativa de PGPT. (A) Frequência relativa de PGPTs por clados. (B)
Distribuição da frequência de PGPTs em relação aos ambientes dos genomas51
Figura 13 - Análise gênica da fixação biológica do nitrogênio em Azospirillum. Em amarelo,
os genes presentes nos genomas. Presente na análise, estão presentes os genes referentes aos
complexos hidrogenases, complexos nitrogenases, genes <i>fix</i> e os genes de regulação53
Figura 14 - Metabolismo de outras fontes nitrogênio. Os genomas contêm genes relacionados
ao metabolismo de amônia, nitrato/nitrito e ureia54
Figura 15 - Bioestimulação em Azospirillum. Os genes presentes nos genomas estão destacados
em amarelo e os ausentes em azul
Figura 16 – Tolerância aos metais traço em Azospirillum. Nos genomas são evidenciados em
amarelo a presença de genes relacionados a tolerância do cobalto, cádmio, mercúrio, cobre e
arsênio60
Figura 17 - Genes relacionados a vias de degradação de xenobióticos em Azospirillum. A
representação à direita indica os locais de isolamento, abrangendo ambientes aquáticos (azul),
fontes termais (vermelho), áreas industriais (roxo), instalações hospitalares (rosa), ecossistemas
vegetais (verde) e solos (laranja)62

LISTA DE ABREVIATURAS E SIGLAS

AIA	_	Ácido indol-3-acético
AAC	_	N-acetiltransferase aminoglicosídeos
ACC-desaminase	_	Ácido 1-amino-ciclopropil-carboxílico desaminase
ADP	_	Adenosina difosfato
ANI	_	Average Nucleotide Identity
АРН	_	Aminoglicosídeo fosfotransferases
ARG	_	Antibiotic Resistance Gene
As	_	Arsênio
C-P liase	_	Carbono-Nitrogênio liase
CARD	_	Comprehensive Antibiotic Resistance Database
Cd	_	Cádmio
cgMLST	_	Core genome multilocus sequence typing
GC	_	Guanina-Citosina
DNA	_	Ácido desoxirribonucleico
FBN	_	Fixação Biológica do Nitrogênio
Fe	_	Ferro
G1	_	Grupo 1
G2	_	Grupo 2
GDH	_	Glutamato desidrogenase
GOGAT	-	Glutamato sintase
GS	—	Glutamina sintetase
GTDB	_	Genome Taxonomy Database
HGT	—	Horizontal gene transfer
IPA	—	Indol-3-piruvato
MoFe	—	Molibdênio-ferro
Ν	—	Nitrogênio
N 2	—	Nitrogênio atmosférico (dinitrogênio)
NCBI	—	National Center for Biotechnology Information
\mathbf{NH}_{4^+}	—	Amônio
NFb	—	New Fabio Pedrosa
Р	_	Fósforo

pH	_	Potencial Hidrogeniônico
PQQ	_	Cofator pirroloquinolina quinona
Ро	_	Fósforo-orgânico
РОСР	_	Percentage of Conserved Proteins
rRNA	_	Ácido ribonucleico ribossômico
SNPs	_	Single-Nucleotide Polymorphism
T6SS	_	Sistema de secreção do tipo 6
ТАМ	_	Triptamina
TSO	_	Tryptophan side-chain oxidase
Тгр	_	Triptofano
VF	_	Virulence Factors
VFDB	_	Virulence Factors of Pathogenic Bacteria Database
PGPB	_	Plant Growth Promoting Bacteria
РНВ	_	Poli-β-hidroxibutirato

	/	
OT TN /	ADIO	
DUNI		

1	INTRODUÇÃO	16
1.1	O gênero Azospirillum	17
1.2	Interações benéficas entre as bactérias e as plantas	20
1.3	O potencial agronômico de Azospirillum	24
1.4	Sequenciamento e análises genômicas	
1.4.1	1 Genômica de <i>Azospirillum</i>	
2	OBJETIVO	29
2.1	Objetivo geral	29
2.2	Objetivos específicos	29
3	METODOLOGIA	
3.1	Obtenção do conjunto de dados	
3.2	Métricas de similaridade e identidade	
3.3	Análise do pangenoma e reconstrução da filogenia	
3.4	Identificação do viruloma e resistoma	
3.5	Comparação de genes de promoção do crescimento vegetal	
4	RESULTADOS E DISCUSSÃO	
4.1	Filtragem dos dados genômicos	34
4.2	Seleção dos genomas de <i>Azospirillum</i>	35
4.3	Análise de identidade e classificação das espécies	
4.4	Pangenoma e filogenia do gênero	40
4.5	Perfil de virulência e resistência	
4.6	Potencial biotecnológico das espécies de Azospirillum	49
4.6.1	1 Biofertilização	51
4.6.2	2 Bioestimulação	56
4.6.3	3 Biorremediação	59
5	CONCLUSÃO	64
REF	FERÊNCIAS	65
APÊ	ÊNDICE A	81
APÊ	ÊNDICE B	85
APÊ	ÊNDICE C	86
APÊ	ÊNDICE D	
APÊ	ÊNDICE E	90
APÊ	ÊNDICE F	92

APÊNDICE G	93
APÊNDICE H	94
APÊNDICE I	95
REFERÊNCIAS DO APÊNCIDE	96

1 INTRODUÇÃO

A produção agrícola global enfrenta um desafio iminente: a necessidade de garantir a segurança alimentar sem comprometer a sustentabilidade ambiental e a saúde humana (KOUR et al., 2020). Durante décadas, a agricultura tem dependido fortemente do uso intensivo de insumos químicos, como fertilizantes e agrotóxicos, na busca por aumentar a produtividade das culturas. No entanto, essa abordagem tem acarretado em consequências adversas preocupantes, incluindo a contaminação de ecossistemas terrestres e aquáticos, a intoxicação de seres vivos, o desenvolvimento de doenças e a redução da biodiversidade (O'CALLAGHAN; BALLARD; WRIGHT, 2022). Diante deste cenário, é imperativa a adoção de estratégias sustentáveis na agricultura.

Uma alternativa em destaque na busca por práticas agrícolas sustentáveis é a adoção de inoculantes. Esses produtos são compostos principalmente por bactérias benéficas aos vegetais, promovendo o seu crescimento, por exemplo, através da disponibilização de nutrientes, produção de fitormônios e auxiliando na defesa contra estresses bióticos e abióticos (SHAHWAR et al., 2023). A diversidade de mecanismos envolvidos nessa interação torna esses microrganismos alvos valiosos para pesquisa biotecnológica.

O uso de abordagens genômicas e análises comparativas e funcionais tem se revelado uma ferramenta poderosa para a seleção de isolados bacterianos e a identificação de genes e proteínas associados à promoção do crescimento vegetal, contribuindo assim para o desenvolvimento de formulações mais eficazes (GREGORY; DESALLE, 2005; KOBRAS; FENTON; SHEPPARD, 2021).

Os microrganismos mais antigos utilizados como inoculantes são os rizóbios, que estabelecem relações simbióticas com leguminosas a partir da Fixação Biológica do Nitrogênio (FBN) em nódulos radiculares especializados (SANTOS; NOGUEIRA; HUNGRIA, 2019). Bactérias do gênero *Azospirillum*, são conhecidas principalmente por realizarem a FBN e por produzirem fitormônios. No entanto, ao contrário dos rizóbios, as espécies de *Azospirillum* são de vida livre e beneficiam as plantas por uma variedade de mecanismos, incluindo a solubilização de fosfato e a produção de sideróforos (BASHAN; DE-BASHAN, 2010; SANTOS; NOGUEIRA; HUNGRIA, 2019).

A capacidade de algumas espécies de *Azospirillum* em estabelecer interações benéficas com as plantas despertou grande interesse científico e resultou na criação de mais de 100 inoculantes comerciais disponíveis na América do Sul (CASSÁN et al., 2020). Entretanto, apesar dos avanços significativos nesse campo, estudos que avaliam a diversidade genética dentro do gênero ainda são escassos. Compreender detalhadamente os diferentes mecanismos presentes nas espécies de *Azospirillum* pode impulsionar o desenvolvimento de novos produtos e aplicações, ampliando ainda mais o potencial dessas bactérias como ferramenta promissora para a agricultura sustentável.

1.1 O gênero Azospirillum

O gênero *Azospirillum* é um grupo de bactérias Gram-negativas pertencente à classe das α-proteobacteria, da ordem Rhodospirillales e foi recentemente designado como gênero-tipo da nova família Azospirillaceae (HÖRDT et al., 2020). Estas bactérias são caracterizadas como diazotróficas de vida livre, possuindo a capacidade de transformar o nitrogênio atmosférico (N₂) a formas assimiláveis pela planta através do processo da FBN (STEENHOUDT; VANDERLEYDEN, 2000). As espécies de *Azospirillum* (*Azospirillum* spp.) demonstram um crescimento ótimo em condições de baixa aeração, caracterizando um metabolismo microaerófilo oxidativo (ALEXANDRE, 2015).

Os isolados pertencentes a esse gênero apresentam metabolismo versátil de carbono e nitrogênio e, embora não formem esporos, convertem-se em formas semelhantes a cistos, produzindo grânulos intracelulares de poli- β -hidroxibutirato (PHB) que servem como fonte de energia (LAMM; NEYRA, 2011; SADASIVAN; NEYRA, 1985). Possuem forma de vibrio ou espirilo, com a presença de flagelos polares, podendo apresentar flagelos laterais, que permitem a locomoção em meios líquidos e em superfícies sólidas, respectivamente (HALL; KRIEG, 1984; MOENS et al., 1995).

A história do gênero *Azospirillum* teve início quando Martinus Beijerinck isolou a primeira espécie a partir de um solo com baixo teor de nitrogênio (BEIJERINCK, 1925). Ele descreveu esse microrganismo como um espirilo capaz de fixar o N_2 e o nomeou como *Spirillum lipoferum* em 1925 (BEIJERINCK, 1925). Em 1974, pesquisas conduzidas pela Dra.

Johanna Döbereiner e colaboradores revelaram semelhanças entre a espécie originalmente descrita por Beijerinck e isolados associados a raízes de diversas gramíneas (VON BULOW; DOBEREINER, 1975). Essa descoberta despertou um grande interesse da comunidade científica e impulsionou os estudos envolvendo *Azospirillum*.

Em 1978, Tarrand e colaboradores propuseram a reclassificação do gênero para a atual nomenclatura de *Azospirillum* (TARRAND; JEFFREY; DÖBEREINER, 1978). Nessa reclassificação, foram incluídas as espécies *A. brasilense* e *A. lipoferum*, dividindo o gênero em dois grupos principais (TARRAND; JEFFREY; DÖBEREINER, 1978). O estudo envolveu um total de 61 cepas provenientes de diferentes países, como Brasil, Venezuela, Estados Unidos, Peru, Senegal, entre outros. Essas cepas foram obtidas a partir de amostras de solos e raízes de diversas plantas (REIS; BALDANI; BALDANI, 2015). Para isolar as espécies de *Azospirillum*, foi utilizado o meio de cultivo semissólido livre de nitrogênio (NFb - *New* Fabio Pedrosa), uma estratégia desenvolvida pelo pesquisador Fabio Pedrosa e empregada para obtenção de cepas de *Spirillum* a partir de amostras de solo e vegetais (BALDANI; BALDANI, 2005; REIS; BALDANI; BALDANI, 2015).

A composição original do meio NFb consistia em um meio isento de nitrogênio, com ácido málico neutralizado como fonte de carbono, pH próximo a 7,0 e baixa concentração de ágar (DAY; DÖBEREINER, 1976; REIS; BALDANI; BALDANI, 2015). A característica semissólida do meio proporcionava um ambiente microaerofílico, favorecendo o início da FBN. Embora nem todos os pesquisadores tenham adotado o meio NFb, sua utilização foi fundamental para o isolamento e identificação de diversas espécies de *Azospirillum* (BALDANI; BALDANI, 2005).

Atualmente, o gênero *Azospirillum* é composto por 24 espécies com classificação validada, compreendendo ampla distribuição geográfica (CASSÁN et al., 2020; PARTE et al., 2020). As diferentes espécies de *Azospirillum* descritas revelam uma diversidade de estratégias e um alto potencial adaptativo para o gênero (CASSÁN et al., 2020; MARONICHE et al., 2017).

As interações com gramíneas cultiváveis estão relacionadas com várias espécies do gênero. Por exemplo, as espécies *A. canadense* e *A. zeae* foram isoladas da rizosfera de *Zea mays*, enquanto *A. oryzae* foi identificada em associação com as raízes de *Oryza sativa* (MEHNAZ; WESELOWSKI; LAZAROVITS, 2007a, 2007b). Adicionalmente, as espécies *A.*

formosense, A. soli e A. agricola foram isoladas de solos agrícolas (LIN et al., 2012, 2015, 2016).

Espécies de *Azospirillum* isoladas de ambientes estressantes também foram relatadas. Por exemplo, a espécie de *A. halopraeferens* foi obtida das raízes do capim-kallar (*Leptochloa fusca*), uma planta cultivada em solos de baixa fertilidade alta salinidade (REINHOLD et al., 1987). Várias cepas de *A. melinis* foram identificadas nas raízes e caules do capim-melaço (*Melinis minutiflora*), uma gramínea forrageira resistente à seca e à indisponibilidade de nutrientes (PENG et al., 2006). Além disso, *A. palustre* foi obtida do pântano coberto pela vegetação de turfa (*Sphagnum magellanicum*) e *A. doebereinerae* foi isolada do capim *Miscanthus sinensis*, uma cultura utilizada para biocombustíveis (ECKERT et al., 2001; TIKHONOVA; GROUZDEV; KRAVCHENKO, 2019).

Embora as espécies deste gênero sejam frequentemente encontradas em associação com plantas, tem havido um aumento na descrição de isolados obtidos em diferentes habitats. Em Taiwan, *A. picis* foi isolada de uma amostra de asfalto descartado, enquanto *A. rugosum* foi isolada de uma amostra de solo contaminado com óleo (LIN et al., 2009; YOUNG et al., 2008). Na Rússia, *A. thiophilum* foi isolada de uma fonte de sulfeto (LAVRINENKO et al., 2010). Ainda, *A. thermophilum* foi isolada de uma fonte termal e *A. humicireducens* foi obtida de um biorreator (ZHAO et al., 2020b; ZHOU et al., 2013).

Outros membros do gênero incluem *A. ramasamyi*, que foi isolado de produtos bovinos fermentados, e *A. fermentarium*, obtido de um tanque fermentativo (ANANDHAM et al., 2019; LIN et al., 2013). Além disso, algumas espécies de *Azospirillum* foram encontradas em ambientes aquáticos, como *A. griseum*, *A. cavernae* e *A. largimobile* (DEKHIL et al., 1997; YANG et al., 2019; ZHU et al., 2021). Por fim, as espécies de *A. baldaniorum* e *A. argentinense* foram recentemente reclassificadas, antes consideradas parte de *A. brasilense* (DOS SANTOS FERREIRA et al., 2020, 2022).

A colonização diferencial por *Azospirillum* também evidencia diferentes estratégias de interação com as plantas. Os isolados de *A. brasilense* são predominantemente encontrados na rizosfera, estabelecendo uma relação próxima com as raízes, enquanto as cepas de *A. baldaniorium* são relatadas colonizando o interior radicular (VANDE BROEK et al., 1993). Além disso, evidências genômicas sugerem uma capacidade de colonização do ambiente filosférico pela cepa *A. argentinense* Az19 (GARCÍA et al., 2020). É interessante notar que essas duas últimas espécies eram anteriormente classificadas como estirpes de *A. brasilense*, o

que indica a presença de diferentes mecanismos de interação com as plantas, mesmo em espécies próximas.

1.2 Interações benéficas entre as bactérias e as plantas

As Bactérias Promotoras do Crescimento Vegetal (PGPB - *Plant Growth Promoting Bacteria*) se destacam pelas relações ecológicas que estabelecem com as plantas, desempenhando um papel fundamental na promoção da saúde vegetal (OROZCO-MOSQUEDA et al., 2021). Entre as espécies de PGPB mais amplamente estudadas, sobressaem-se aquelas pertencentes ao gênero *Azospirillum*, que se tornaram um modelo comum de estudo na compreensão das interações entre bactéria e planta desde sua redescoberta em 1970 (CASSÁN et al., 2020).

Os PGPBs são predominantemente encontrados na região da rizosfera (rizobactérias), que corresponde à porção do solo influenciada pela presença de exsudatos radiculares das plantas (GROVER et al., 2021). O grupo de PGPB também inclui cepas de rizóbios, que estabelecem simbioses ao formar nódulos nas raízes das plantas, e endófitos, capazes de residir nos tecidos internos das plantas (OLANREWAJU; GLICK; BABALOLA, 2017).

A promoção do crescimento vegetal por essas bactérias ocorre por meio de diferentes estratégias, que podem ser diretas ou indiretas, conforme ilustrado na Figura 1. Mecanismos diretos incluem a biofertilização, pela disponibilização de nutrientes para a planta (por exemplo, nitrogênio, fósforo, potássio), e a bioestimulação, principalmente pela síntese de hormônios vegetais (GAMALERO; GLICK, 2011; GLICK, 2012). Já os mecanismos indiretos estão frequentemente associados às estratégias de sobrevivência antagonistas utilizadas pelas bactérias, que suprimem a ação de fitopatógenos e favorecem o crescimento das plantas (GAMALERO; GLICK, 2011; GLICK, 2012).

O nitrogênio desempenha um papel fundamental para os seres vivos, sendo um dos nutrientes mais limitantes nos ecossistemas e na agricultura (SOUMARE et al., 2020). Embora a atmosfera seja composta por cerca de 80% de nitrogênio gasoso, apenas um grupo restrito de procariotos, conhecidos como diazotróficos, possui a capacidade de fixar o N_2 (STEENHOUDT; VANDERLEYDEN, 2000). A FBN é responsável pela conversão do

nitrogênio gasoso em amônio (NH4⁺), o qual pode ser assimilado pelas plantas (MASSENA et al., 2006).

Figura 1 - Mecanismos diretos e indiretos de promoção do crescimento vegetal realizados por PGPBs.

A nitrogenase é a enzima responsável por catalisar a redução do nitrogênio atmosférico a NH4⁺. Esse complexo enzimático é composto pelos componentes metálicos da dinitrogenase MoFe (proteína molibdênio-ferro) e dinitrogenase redutase (proteína ferro) (SOUMARE et al., 2020). Outras duas nitrogenases também são conhecidas, e possuem grupos metálicos alternativos ao molibdênio, como o vanádio (V-nitrogenase) e o ferro (Fe-nitrogenase) (SOUMARE et al., 2020). Independentemente do metal utilizado, a nitrogenase é inativada em ambiente aeróbico devido à sua alta sensibilidade ao oxigênio (SOUMARE et al., 2020). Além disso, o controle da fixação e assimilação de N envolve uma rede complexa de genes regulatórios e fatores ambientais em virtude do alto custo energético para as bactérias diazotróficas (MASSENA et al., 2006). Espécies do gênero *Azospirillum* são consideradas um modelo para a investigação da FBN em bactérias não simbióticas (CASSÁN et al., 2020). A principal cepa utilizada nesses estudos é a *A. baldaniorum* Sp245, uma vez que seu genoma foi completamente sequenciado e essa bactéria foi caracterizada fisiologicamente (DE SOUZA; DE OLIVEIRA PEDROSA, 2015). No genoma de Sp245, foram identificadas duas regiões relacionadas aos genes *nif*, que sugerem a presença de uma nitrogenase alternativa. Além disso, as bases genéticas da assimilação de amônio também foram detalhadas em Sp245, com a identificação de vias metabólicas envolvendo as enzimas glutamato desidrogenase (gene *gdh*A) e glutamato sintase (*glt*B e *glt*D), ativadas em concentrações altas e baixas de NH₄⁺, respectivamente (DE SOUZA; DE OLIVEIRA PEDROSA, 2015).

A FBN foi o primeiro mecanismo promotor do crescimento vegetal descrito em *Azospirillum* (OKON; HEYTLER; HARDY, 1983). No entanto, apesar do impacto positivo no crescimento das plantas, o nitrogênio disponibilizado por *Azospirillum* nesse processo mostrouse insuficiente para atender plenamente às necessidades das plantas (BARBIERI et al., 1986; BASHAN; DE-BASHAN, 2010; KENNEDY; CHOUDHURY; KECSKÉS, 2004; REIS; BALDANI; BALDANI, 2015).

Dentre os resultados mais evidentes após a inoculação com cepas de *Azospirillum* estão as mudanças na arquitetura das raízes, consideradas uma resposta vegetal, geralmente são atribuídas à produção exógena de ácido indol-3-acético (AIA) (BASHAN; LEVANONY, 1990). Esse foi o segundo mecanismo descrito em *Azospirillum* (REYNDERS; VLASSAK, 1979). O AIA é um fitormônio da classe das auxinas e produzido por uma ampla diversidade de bactérias do solo. A produção de AIA é um dos mecanismos de promoção do crescimento vegetal mais explorados em *Azospirillum* (SPAEPEN; VANDERLEYDEN, 2015).

Existem cinco vias principais conhecidas para a produção de AIA a partir do precursor L-triptofano (Trp) (Figura 2). Essas rotas incluem a via do indol-3-piruvato (IPA), indol-3-acetamida (IAM), indol-3-acetonitrila (IAN), triptamina (TAM) e a via de oxidação das cadeias laterais do triptofano (TSO). No entanto, apesar de indícios que sugerem a existência de vias independentes de Trp, ainda se sabe pouco sobre elas (SPAEPEN; VANDERLEYDEN, 2011). Em *Azospirillum*, foram identificadas as vias IPA, IAM, TAM e uma via Trp-independente (CASSÁN; VANDERLEYDEN; SPAEPEN, 2013).

Na espécie A. brasilense, por exemplo, a enzima indolpiruvato descarboxilase (gene *ipd*C), que desempenha um papel crucial na via do IPA, foi caracterizada como uma

fenilpiruvato descarboxilase (SPAEPEN et al., 2007). Embora a enzima catalise a conversão do indolpiruvato em indolacetaldeído, sua atividade catalítica mostra-se mais elevada para o substrato fenilpiruvato (SPAEPEN et al., 2007). Em outro estudo, os genes *ipd*C, *his*C1 e *his*C2, sendo os dois últimos envolvidos na primeira etapa da via do IPA, foram considerados conservados em cepas de *A. brasilense*, sugerindo seu potencial como marcadores filogenéticos para a identificação da espécie (JIJÓN-MORENO et al., 2015).

Figura 2 - Vias de produção do ácido indol-3-acético. Fonte: SPAEPEN e VANDERLEYDEN (2011).

Outros genes foram identificados em *Azospirillum* sp. B510, um endófito facultativo, isolado de caules de plantas de arroz, que possui nitrilases associadas à via IAN, além dos genes candidatos (*iaa*M e *iaa*H), relacionados à via indol-3-acetamida (KANEKO et al., 2010). Na bactéria *Azospirillum* sp. UENF-412522, isolada do rizoplano do maracujá (*Passiflora edulis*), testes *in vitro* evidenciaram a produção de AIA na presença de triptofano. No entanto, a análise genômica não possibilitou a identificação de genes envolvidos em vias completas de produção da auxina, sugerindo a existência de outras rotas Trp-dependentes ou genes ainda desconhecidos (RODRIGUES et al., 2022).

Embora a FBN e a produção de auxina tenham sido as principais características estudadas em *Azospirillum*, diversas outras estratégias de promoção do crescimento vegetal foram descritas neste gênero bacteriano. Essas estratégias incluem a capacidade de produzir

outros fitormônios e reguladores do crescimento vegetal, incluindo as giberelinas (BOTTINI et al., 1989), o ácido abscísico (COHEN et al., 2009), a citocinina (ZAHEER et al., 2022) e a enzima ACC-desaminase (ácido 1-amino-ciclopropil-carboxílico), reguladora dos níveis de etileno vegetal (KUSAJIMA et al., 2018). Outros reguladores do crescimento vegetal, como as poliaminas e óxido nítrico, também foram relatados em *Azospirillum* (PERRIG et al., 2007).

Outras estratégias têm sido descritas em espécies de *Azospirillum*, incluindo a capacidade de solubilizar fosfato e a produção de sideróforos (TORTORA; DÍAZ-RICCI; PEDRAZA, 2011). A produção de sideróforos também está associada à atividade de biocontrole, uma vez que restringe a disponibilidade de ferro no ambiente, reduzindo assim a sobrevivência de outros organismos, como fitopatógenos (TORTORA; DÍAZ-RICCI; PEDRAZA, 2011).

Algumas cepas de *Azospirillum* também mostraram efeitos benéficos eficazes na mitigação de estresses bióticos e abióticos. Sob condições de estresse salino e hídrico, essas bactérias são capazes de induzir respostas de tolerância sistêmica nas plantas (VACHERON et al., 2015). Além disso, estudos anteriores destacam sua capacidade de mitigar os efeitos prejudiciais causados por metais traço (CASSAN et al., 2021; CRUZ-HERNÁNDEZ et al., 2022).

Embora as estratégias subjacentes à interação de *Azospirillum* com as plantas ainda não estejam completamente elucidadas, os efeitos benéficos observados após a inoculação revelamse como resultado da interação sinérgica de diversos mecanismos executados por essas bactérias (BASHAN; DE-BASHAN, 2010; CASSÁN et al., 2020; FUKAMI; CEREZINI; HUNGRIA, 2018).

1.3 O potencial agronômico de Azospirillum

Os inoculantes consistem principalmente em bactérias e fungos, tendo um papel fundamental como biofertilizantes ao contribuir para a nutrição vegetal como uma alternativa aos fertilizantes inorgânicos convencionais (MALUSÁ; SAS-PASZT; CIESIELSKA, 2012). Além disso, eles exercem outras funções específicas, como promover o crescimento vegetal através dos bioestimulantes, controlar pragas e doenças por meio dos biopesticidas, e aprimorar as condições físico-químicas do solo com os biorremediadores (O'CALLAGHAN; BALLARD; WRIGHT, 2022).

O mercado de inoculantes tem crescido rapidamente em escala global, desempenhando um papel fundamental na agricultura brasileira. Na safra de 2019/2020, cerca de 78% da área cultivada com soja (*Glycine max* (L.) Merr.) no Brasil foi inoculada com bactérias, evidenciando o sucesso da prática (SANTOS; NOGUEIRA; HUNGRIA, 2019). A inoculação da soja com linhagens de *Bradyrhizobium* pode eliminar a necessidade de fertilizantes nitrogenados (SANTOS; NOGUEIRA; HUNGRIA, 2019). Além dos benefícios econômicos, essa substituição também contribui para a redução das emissões de gases de efeito estufa associadas à produção desses fertilizantes (O'CALLAGHAN; BALLARD; WRIGHT, 2022).

Em países da América do Sul, especialmente na Argentina, Uruguai e Brasil, inoculantes formulados à base de *Azospirillum* são amplamente adotados devido à agricultura extensiva praticada nessas regiões (CASSÁN et al., 2020). O potencial agronômico desse gênero é evidenciado pela sua presença em mais de 100 produtos agrícolas, os quais destacam, principalmente, o fornecimento de nitrogênio às plantas por essas bactérias (CASSÁN et al., 2020). Embora essas formulações possuam grande aceitação, a capacidade de *Azospirillum* em fornecer N para as plantas se mostrou inconclusiva como responsável pelos efeitos benéficos observados após a inoculação (FUKAMI et al., 2016; O'CALLAGHAN; BALLARD; WRIGHT, 2022).

Adicionalmente, um estudo recente conduzido por Cassán e colaboradores (2020) revelou que a maioria desses produtos é formulada exclusivamente com as espécies *A. brasilense* e *A. argentinense* (CASSÁN et al., 2020). Dentre os inoculantes, mais da metade é formulada a partir de uma única estirpe, a cepa Az39 de *A. argentinense*, presente em pelo menos 79 produtos agrícolas (CASSÁN et al., 2020). Uma pequena parcela dos inoculantes é composta por formulações mistas, que combinam a cepa Az39 com outras espécies, como *Pseudomonas fluorescens* ou *B. japonicum*. No caso das formulações baseadas em *A. brasilense*, as cepas AbV5 e AbV6, desenvolvidas por meio de pesquisas brasileiras, estão presentes em pelo menos 18 produtos (SANTOS; NOGUEIRA; HUNGRIA, 2021). Outras cepas de *A. brasilense* encontradas nas formulações incluem AzM3, AzT5, BR1003 e BR11005 (CASSÁN et al., 2020).

Até a reclassificação de *A. argentinense* ocorrida no ano passado, todos os inoculantes à base de *Azospirillum* eram produzidos com bactérias identificadas como *A. brasilense* (CASSÁN et al., 2020). Essa reclassificação de *A. argentinense* fundamentou-se em parâmetros genômicos que permitiram a identificação de um agrupamento formado por seis cepas, incluindo a Az39 (DOS SANTOS FERREIRA et al., 2022). Apesar dessa separação, *A. argentinense* e *A. brasilense* compartilham uma alta similaridade genética, evidenciando a baixa diversidade biológica presente nos produtos formulados com *Azospirillum* na América do Sul.

O gênero *Azospirillum* é amplamente estudado devido à sua capacidade de estabelecer associações benéficas com as raízes das plantas (CASSÁN et al., 2021). Esforços significativos têm sido feitos para desvendar as bases fisiológicas e genômicas dessa interação (BASHAN; HOLGUIN; DE-BASHAN, 2004). Embora as bases genéticas relacionadas ao metabolismo do nitrogênio sejam as mais exploradas, a identificação de outros genes associados a mecanismos importantes tem contribuído para aprimorar os inoculantes (BASHAN; HOLGUIN; DE-BASHAN, 2004). Além disso, a descoberta de novas espécies dentro do gênero revelou uma grande versatilidade ainda pouco explorada (SANT'ANNA et al., 2011).

Estudos sistemáticos e comparativos que avaliem a diversidade genética nos genomas de *Azospirillum* ainda são escassos. Uma investigação mais aprofundada dessa diversidade pode fornecer informações valiosas para o desenvolvimento de aplicações mais eficazes e ampliar o potencial biotecnológico desse gênero na agricultura sustentável.

1.4 Sequenciamento e análises genômicas

Desde o sequenciamento dos primeiros genomas bacterianos em 1995 até os dias atuais, tem sido testemunhada uma notável evolução nas abordagens experimentais para o estudo de bactérias e arqueias (KOONIN; MAKAROVA; WOLF, 2021). O desenvolvimento das técnicas de sequenciamento de nova geração permitiu o mapeamento simultâneo de milhões de fragmentos de DNA de forma mais rápida, precisa e acessível (KOBRAS; FENTON; SHEPPARD, 2021). Esses avanços têm proporcionado a obtenção de informações valiosas sobre o metabolismo, contexto ambiental e interações hospedeiro-bactéria, cuja taxa de descoberta ainda está em crescimento constante (KOBRAS; FENTON; SHEPPARD, 2021). O aumento significativo no volume de dados genômicos depositados em bancos de dados públicos, aliado a novas metodologias analíticas, tem impulsionado progressos notáveis no campo da genômica, com impacto direto em várias áreas (GAUTHIER et al., 2019). Na área da saúde, o uso dessas ferramentas é essencial para compreender e monitorar a origem, propagação e detecção de epidemias e surtos de infecções bacterianas (MOUSTAFA; LAL; PLANET, 2020). As técnicas filogenéticas demonstraram ser particularmente valiosas na inferência das origens geográficas de surtos, como evidenciado na detecção de isolados distintos em surtos de *Vibrio cholerae*, permitindo a identificação de epidemias paralelas (MOUSTAFA; LAL; PLANET, 2020).

Além disso, a caracterização do resistoma antibiótico de uma cepa, que envolve a detecção dos genes ou variantes associados à resistência a drogas, possibilita a identificação da suscetibilidade a antibióticos em bactérias e auxilia na identificação de possíveis patógenos (MOUSTAFA; LAL; PLANET, 2020; WASH et al., 2022). De maneira semelhante, o viruloma, compreendendo o conjunto de todos os genes ou variantes que codificam fatores de virulência conhecidos, pode ser empregado na determinação do potencial patogênico de um organismo (MOUSTAFA; LAL; PLANET, 2020).

Na agricultura, a genômica comparativa desempenha um papel crucial na seleção de cepas bacterianas para uso em biofertilizantes. Um exemplo notável é a pesquisa com espécies de *Pseudomonas*, abrangendo diversas implicações, incluindo sua aplicação em larga escala para fins biotecnológicos (NGALIMAT et al., 2021). A ampla diversidade do gênero inclui patógenos humanos oportunistas, como *P. aeruginosa*, fitopatógenos como *P. syringae* e agentes de biocontrole, como *P. putida* e *P. fluorescens* (NGALIMAT et al., 2021).

Com o avanço contínuo do conhecimento e a disponibilidade de tecnologia, tem-se explorado um vasto potencial de aplicação para diversas espécies bacterianas, como é o caso de *P. putida* (WEIMER et al., 2020). Membros dessa espécie têm sido relatados como agentes de biorremediação, atuando em ambientes contaminados, além de servirem como hospedeiros valiosos para biofabricação industrial, incluindo a produção de produtos químicos a granel, produtos especiais e produtos naturais (WEIMER et al., 2020). Além disso, produtos baseados na capacidade dessas bactérias de promover o crescimento vegetal já são comercializados, demonstrando o impacto dessa pesquisa na promoção da sustentabilidade na agricultura (WEIMER et al., 2020).

1.4.1 Genômica de Azospirillum

O primeiro genoma completo de *Azospirillum*, isolado de plantas de arroz, foi publicado em 2010, revelando a estrutura genômica da cepa B510 (KANEKO et al., 2010). Em 2014, o sequenciamento de *A. argentinense* Az39, uma espécie de grande importância agronômica, foi reportado (RIVERA et al., 2014). Em 2018, foram sequenciadas as cepas de *A. brasilense* Ab-V5 e Ab-V6, de relevância econômica para o Brasil dada a sua extensiva utilização em biofertilizantes (HUNGRIA; RIBEIRO; NOGUEIRA, 2018). Atualmente, há 101 genomas classificados como pertencentes ao gênero *Azospirillum* depositados no GenBank (NCBI - *National Center for Biotechnology Information*).

A introdução das novas técnicas de genômica e biologia molecular trouxe avanços significativos para o estudo de *Azospirillum*. No entanto, as formulações comerciais à base de *Azospirillum* concentram-se principalmente em *A. argentinense* e *A. brasilense*, com foco na FBN (CASSÁN et al., 2020; FUKAMI; CEREZINI; HUNGRIA, 2018). Essa tendência abre oportunidades para explorar novas espécies e potencialidades dentro do gênero.

Nesse sentido, esta dissertação visa prospectar outras espécies candidatas do gênero *Azospirillum* com potencial biotecnológico, buscando expandir a base de estirpes para a formulação de inoculantes. Com a compreensão aprofundada das bases genéticas relacionadas às interações benéficas entre *Azospirillum* e as plantas, espera-se contribuir para a ampliação do seu uso como ferramenta promissora na agricultura moderna, promovendo uma abordagem mais sustentável e eficiente para o manejo de culturas agrícolas.

2 **OBJETIVO**

2.1 Objetivo geral

Investigar a diversidade genômica do gênero *Azospirillum*, com foco nas bases genéticas dos mecanismos de promoção do crescimento vegetal em diferentes espécies, visando expandir a base de estirpes para uso em bioinoculantes.

2.2 Objetivos específicos

A. Obter o conjunto de dados, avaliar a qualidade e estimar a identidade genômica dos isolados;

B. Reconstruir a filogenia do gênero;

C. Avaliar o perfil de virulência e de resistência a antimicrobianos;

D. Analisar a distribuição de genes associados a biofertilização, bioestimulação e biorremediação nos isolados do gênero.

3 METODOLOGIA

3.1 Obtenção do conjunto de dados

Foram recuperados 180 genomas pertencentes a família Azospirillaceae, disponíveis no banco de dados do GenBank/ NCBI, em setembro de 2022. Deste conjunto de dados, 162 foram obtidos através do Entrez-Direct v17.9, pela atribuição do táxon "2829815" à função *efetch* (APÊNDICE A) (KANS, 2010).

Os outros 18 genomas foram adicionados manualmente ao conjunto de dados por meio da consulta à filogenia da família Azospirillaceae, conforme disponível no *Genome Taxonomy Database* (GTDB) em setembro de 2022 (PARKS et al., 2022). Para realizar essa integração, foram comparados os números de acesso e a classificação taxonômica dos genomas pertencentes à família Azospirillaceae entre os dois bancos de dados. Os genomas classificados como pertencentes à Azospirillaceae pelo GTDB, mas que não constavam no conjunto de dados inicial, foram obtidos individualmente do GenBank (disponível no APÊNDICE B).

A avaliação da fragmentação e contaminação dos genomas foi conduzida por meio dos programas QUAST v5.0.2 (GUREVICH et al., 2013) e CheckM v1.2.0 (PARKS et al., 2015), respectivamente. Genomas com mais de 500 contigs e com contaminação superior a 10% foram excluídos das análises. A completude foi avaliada através do BUSCO v5.3.2, utilizando o conjunto de dados para Rhodospirillales como referência, com um limite mínimo estabelecido em $\geq 90\%$ (SIMÃO et al., 2015). Os genes de todos os genomas foram preditos de novo utilizando o Prokka v1.14.6, a fim de garantir a comparação sistemática de genomas (SEEMANN, 2014).

Para eliminar redundâncias, analisamos a similaridade entre os genomas usando o Mash v1.1, agrupando aqueles que apresentavam distâncias pareadas ≤ 0,005 (ONDOV et al., 2016). As cepas com os maiores valores de N50 foram escolhidas como representantes de seus respectivos grupos. As espécies/cepas tipo foram determinadas com base em dados da literatura. Nos agrupamentos nos quais as cepas tipo exibiram valores de N50 inferiores em comparação com outros genomas, a cepa com menor fragmentação foi selecionada e designada como a cepa tipo representativa.

3.2 Métricas de similaridade e identidade

A estimativa de distância entre os genomas filtrados para Azospirillaceae foi realizada utilizando o Mash v1.1, e uma árvore de distância foi gerada com o Quicktree v2.5 (HOWE; BATEMAN; DURBIN, 2002) Para avaliar a similaridade dentro da família e identificar os genomas do gênero *Azospirillum*, a linhagem de *A. lipoferum* Sp59b (GCA_024170005.1) foi adotada como referência, delimitando os genomas do gênero com distâncias de até 0,20. A Porcentagem de Proteínas Conservadas (POCP - *Percentage of Conserved Proteins*) entre dois genomas também foi calculada para os genomas da família, com o objetivo de delimitar o gênero *Azospirillum* (QIN et al., 2014). O gráfico foi gerado usando o pacote *pheatmap* v.1.0.12.

A identidade média de nucleotídeos (ANI - Average Nucleotide Identity) entre as espécies do gênero Azospirillum identificadas, foram calculadas pelo alinhamento MUMmer, com pyANI v0.2.11 (PRITCHARD et al., 2016). As cepas foram categorizadas em cinco grupos de acordo com os seguintes locais de isolamento: aquático, fonte termal, industrial, hospitalar, vegetal e solo. Essa categorização baseou-se em informações obtidas na literatura e em dados disponíveis nos bancos genômicos (APÊNDICE D). A categoria "vegetal" incluiu apenas os isolados para os quais haviam informações disponíveis sobre a planta hospedeira colonizada. Além disso, duas cepas em particular, *A. ramasamyi* M2T2B2 (GCA_003233655.1), isolada de uma formulação orgânica à base de esterco bovino, e *A. humicireducens* SgZ-5 (GCA_001639105.2), um redutor de húmus obtido de uma célula a combustível microbiano, foram incluídas na categoria "solo" (ANANDHAM et al., 2019; ZHOU et al., 2013). Adicionalmente, os dados genômicos para as cepas reclassificadas utilizadas nesse trabalho, encontram-se no APÊNDICE E.

3.3 Análise do pangenoma e reconstrução da filogenia

O pangenoma do gênero *Azospirillum* foi analisado com Roary v3.12 e as famílias gênicas foram agrupadas em um limite de 75% de identidade (PAGE et al., 2015). Os genes

centrais (*i.e.*, core) foram designados como sendo aqueles presentes em ao menos 90% dos genomas. Estes genes foram alinhados com MAFFT v7.407 (KATOH; TOH, 2008). A abertura do pangenoma foi calculada com o pacote do micropan v2.1 do R (SNIPEN; LILAND, 2015).

Os *Single-Nucleotide Polymorphism* (SNPs) foram obtidos do alinhamento do genoma central com o SNP-sites (PAGE et al., 2016), e utilizados para a reconstrução da filogenia através do método de máxima verossimilhança, com IQ-TREE v.2.2.0.3 (MINH et al., 2020). Foi utilizado o modelo evolutivo "GTR + F + ASC + G4", e o suporte dos nós internos foi avaliado por 1000 réplicas de *bootstrap* (MINH; NGUYEN; VON HAESELER, 2013). A árvore resultante foi visualizada com iTOL v.5 (LETUNIC; BORK, 2021).

3.4 Identificação do viruloma e resistoma

Os genes de virulência e resistência antimicrobiana foram identificados com USEARCH versão 11.0.66 estabelecendo um limite de 60% para identidade e 50% para cobertura (EDGAR; BATEMAN, 2010). As sequências de referência para resistência a antibióticos foram obtidas no *Comprehensive Antibiotic Resistance Database* v3.0.9 (CARD) (ALCOCK et al., 2020). Para a identificação dos fatores de virulência, foram empregados os genes disponíveis no *Virulence Factors of Pathogenic Bacteria Database* (VFDB, acesso em janeiro de 2023) (CHEN et al., 2012). A fim de eliminar redundâncias, as sequências foram agrupadas com um limite de identidade de 80%, utilizando o algoritmo UCLUST versão 1.2.22 (EDGAR; BATEMAN, 2010).

A avaliação dos elementos genéticos móveis foi realizada por inferência de ilhas genômicas e plasmídeos. A predição de ilhas genômicas foi obtida com o IslandViewer 4 (BERTELLI et al., 2017), uma abordagem que integra quatro métodos diferentes: SIGI-HMM (WAACK et al., 2006), IslandPath-DIMOB (HSIAO et al., 2003), Islander (HUDSON; LAU; WILLIAMS, 2015) e IslandPick (LANGILLE; HSIAO; BRINKMAN, 2008). Para a identificação de plasmídeos, foi empregado o PlasForest (PRADIER et al., 2021). Adicionalmente, foram considerados os plasmídeos previamente identificados nos genomas com montagens completas, disponíveis no GenBank.

Os genes preditos nos genomas foram categorizados como centrais e acessórios, sendo discriminados quanto à sua presença em elementos genéticos móveis. Genes centrais foram identificados quando presentes em mais de 90% dos genomas, enquanto genes acessórios foram definidos como aqueles abaixo desse limiar. O perfil de presença/ausência dos genes, plasmídeos e regiões de transferência horizontal de genes (HGT - *Horizontal Gene Transfer*) foi integrado e visualizado utilizando o pacote *tidyverse* do R (HADLEY, 2017).

3.5 Comparação de genes de promoção do crescimento vegetal

Para identificar os genes de interesse nos genomas, foi utilizada a ontologia de características promotoras do crescimento vegetal (PGPT - *Plant Growth Promotion Traits*), disponível na plataforma web para bactérias associadas a plantas, denominada PlaBAse; (https://plabase.cs.uni-tuebingen.de/pb/plabase.php) (PATZ et al., 2021). Os genes de referência foram alinhados nos genomas utilizando o software USEARCH versão 11.0.667, com limiares mínimos de 60% de identidade e 50% de cobertura. A presença dos PGPTs nos genomas foi visualizada por meio de um *heatmap*, utilizando a escala Z-score para representar a abundância dos genes. Os perfis de presença/ausência dos genes foram gerados utilizando o pacote *tidyverse* do R.

4 **RESULTADOS E DISCUSSÃO**

4.1 Filtragem dos dados genômicos

Com o intuito de garantir uma identificação precisa dos genomas de *Azospirillum*, recuperamos 180 genomas pertencentes à família Azospirillaceae do GenBank. Avaliamos a qualidade dos genomas e filtramos por fragmentação e completude (vide metodologia; Figura 3.A e Figura 3.B). Nenhum genoma apresentou contaminação superior a 10% (Figura 3.C). Uma completude inferior a 90% foi observada para *Azospirillum* sp. UENF-41252; entretanto, este genoma foi mantido nas análises devido à sua prévia identificação como membro de *Azospirillum*, validada por diversas abordagens taxonômicas (RODRIGUES et al., 2022).

Figura 3 - Avaliação da montagem de 180 genomas da família Azospirillaceae. (A) Tamanhos predominantes dos genomas entre 6 e 8 Mpb; (B) Genomas com completude ≥ 90% acima da linha tracejada vermelha; (C) Avaliação da contaminação, com valores abaixo de 10% em todos os genomas.

Em seguida, os genomas de Azospirillaceae que apresentaram valores de distância Mash $\leq 0,005$ foram agrupados. Selecionamos um genoma representativo dentre os 18 grupos formados (ver APÊNDICE C). Destaca-se, entre esses grupos, o agrupamento 1, composto por

duas cepas de *A. baldaniorum* Sp245 (cepa tipo) e *A. brasilense* BR 11005, indicando uma reclassificação para este último genoma. Uma das diferenças notáveis entre essas espécies está relacionada ao padrão de colonização vegetal. A cepa de *A. baldaniorum* demonstra a capacidade de colonizar o interior das raízes, enquanto *A. brasilense* parece estar restrita à colonização da superfície radicular (ASSMUS et al., 1995; VANDE BROEK et al., 1993). Ressalta-se que *A. brasilense* BR11005 é encontrada em inoculantes comerciais, e sua identificação como pertencente à espécie *A. baldaniorum* pode fornecer novas informações sobre os mecanismos de ação desse microrganismo nas plantas.

No agrupamento 2, estão presentes 13 cepas pertencentes a *A. brasilense*, entre as quais se destacam a Sp7, AbV5, AbV6 e Cd, conhecidas por sua relevância agronômica e importância para a pesquisa (APÊNDICE C). O agrupamento dessas cepas corrobora com a baixa variabilidade genética das cepas de *Azospirillum* usadas em inoculantes (CASSÁN et al., 2020). Os demais grupos encontram-se disponíveis no APÊNDICE C. Com base nesses procedimentos, um total de 97 genomas foi obtido para a família Azospirillaceae.

4.2 Seleção dos genomas de Azospirillum

Para identificar os isolados do gênero *Azospirillum*, foi realizada uma análise da similaridade entre os genomas previamente filtrados para a família Azospirillaceae. A distância entre cada genoma foi calculada com a ferramenta Mash, possibilitando a construção de uma árvore de distâncias, conforme representado na Figura 4. Utilizando a espécie-tipo de *Azospirillum* como referência, valores de distância de até 0,20 foram utilizados na identificação dos genomas do gênero (vide metodologia). Esse processo levou à identificação de 63 isolados para o gênero, incluindo *Roseomonas genomoespecie* 6 (GCA_008365375.1), que foi designada nesse trabalho como *Azospirillum* sp. 008365375, de acordo com a classificação proposta pelo GTDB.

Figura 4 - Árvore de distância da família Azospirillaceae. Em azul, a cepa de *Roseomonas* agrupada ao gênero *Azospirillum* (cinza). Os genomas classificados incorretamente como de *Azospirillum*, estão destacados em vermelho e exibem distâncias incompatíveis com o gênero.

Classificações incorretas foram visualizadas para outros cinco genomas. Os genomas classificados como *Azospirillum* sp. RU38E (GCA_900188385.1), *Azospirillum* sp. RI_112 (GCA_016124535.1), *Azospirillum* sp. M122S2SP1A49QC, e os isolados S2_012_000_R2_79 (GCA_003241095.1) e S2_003_000_R2_10 (GCA_003243305.1) de *A. brasilense*, não apresentaram valores de distância compatíveis com gênero *Azospirillum*, relacionando-se a outros grupos taxonômicos. Além disso, esses resultados são apoiados por reclassificações sugeridas pelos GTDB (APÊNDICE B).

Para complementar a análise de distância, a proporção de proteínas compartilhadas entre dois genomas foi avaliada utilizando o índice POCP. Em genomas procarióticos, define-se um gênero como um grupo de espécies com valores de POCP superiores a 50% (QIN et al., 2014). Nessa análise, os MAGs de *Azospirillum* sp. SRR14536363 (GCA_946480385.1), *A. oryzae* A2P (GCA_900177515.1), *A. lipoferum* R1C (GCA_900177475.1) e *Niveispirillum* sp. 900188385 (GCA_900188385.1) foram excluídos do *heatmap*, por apresentaram resultados inconclusivos nessa avaliação. Os agrupamentos formados entre os demais genomas podem ser visualizados na Figura 5.

Figura 5 - Delimitação dos gêneros através pela análise de POCP. Em vermelho, estão destacados os três genomas classificados como de *Azospirillum* que demonstraram não pertencer a família.

Os genomas pertencentes ao gênero *Azospirillum* apresentaram uma conservação de 60% das proteínas, valor previamente estabelecido para a delimitação de outros gêneros (PARK et al., 2022). Adicionalmente, essa análise identificou 11 gêneros relacionados a *Azospirillum*, sendo eles *Arenibaculum*, *Skermanella*, *Nitrospirillum*, *Oleisolibacter*, *Rhodospirillum*, *Aerophotrophica*, *Indioceanicola*, *Niveispirillum*, *BOG-112*, *CAIZDL01* e *RI-112*.

Os gêneros *Arenibaculum*, *Oleisolibacter* e *Indioceanicola* foram recentemente transferidos para a família Azospirillaceae (LI et al., 2021). Enquanto os gêneros *Aerophototrophica*, *Rhodospirillum*, *BOG-933* e *CAIZDL01* foram incluídos à família através da reconstrução filogenética disponibilizada pelo GTDB (PARKS et al., 2022). Além disso, a linhagem RI_112, embora não faça parte do gênero *Azospirillum*, revelou-se estar relacionada à família, formando um grupo à parte. Por outro lado, as cepas M122S2SP1A49QC,

S2_012_000_R2_79 e S2_003_000_R2_10 não demonstraram pertencer à família Azospirillaceae.

4.3 Análise de identidade e classificação das espécies

As relações taxonômicas entre os 63 genomas identificados como pertencentes ao gênero *Azospirillum* foram estabelecidas através da análise de ANI (Figura 6). Para a delimitação das espécies, foi adotado um limiar mínimo de 95% de identidade, utilizando as cepas tipo como referência na classificação dos genomas (RICHTER; ROSSELLÓ-MÓRA, 2009). Como resultado, foram identificados 11 agrupamentos de espécies (A1 a A11), incluindo três compostos por cepas sem classificação taxonômica em nível de espécie. Além disso, foi observada a presença de 20 espécies com nomenclatura validada, e três espécies ainda não validadas: *A. oleiclasticum* ROY-1-1-2, *A. tabaci* W712 e *A. endophyticum* YIM B02556 (DUAN et al., 2022; WU et al., 2021; ZHAN et al., 2023).

Valores de identidade abaixo 95% foram visualizados para diferentes genomas classificados como pertencentes da mesma espécie. Dentre eles, as cepas R1C e 4B classificadas como *A. lipoferum* e *A. oryzae* A2P, apresentaram valores de ANI incompatíveis para a classificação de espécies ao comparadas com as respectivas cepas tipo. Em contrapartida, a cepa de R1C formou um agrupamento com *A. agricola* CC-HIHO38 (A1, 96,62%), enquanto 4B e A2P não se agruparam com nenhuma espécie conhecida.

Os agrupamentos formados entre genomas sem classificação de espécie e espécies validadas, como *Azospirillum* sp. TSA6c e *A. melinis* TMCY0552 (A3, 95,79%) e *Azospirillum* sp. Sh1 e *A. oryzae* KACC14407 (A4, 97,22%), sugerem uma proposta preliminar de classificação. Por outro lado, o agrupamento A5 (\geq 96%), que inclui as cepas TSO5, TSA2S, A1-3 e TSH20, indica a presença de uma espécie ainda sem classificação taxonômica. No entanto, as cepas desse agrupamento apresentaram pelo menos 94% de ANI com a cepa tipo de *A. oryzae*, indicando a necessidade de análises adicionais para a proposição de uma nova espécie.

Figura 6 - Heatmap da análise de ANI. À esquerda, estão representados os 11 agrupamentos de espécies (A1-11) e os dois grupos (G1 e G2), identificados devido à alta identidade entre os genomas. Os 12 genomas previamente classificados como *A. brasilense* estão destacados em vermelho. Os agrupamentos A5, A6 e A9 correspondem as cepas sem classificação específica para espécie após essa análise.

Dos 12 genomas classificados como pertencentes à espécie *A. brasilense*, apenas a cepa SR80 apresentou ANI superior a 95% com a cepa tipo representativa MTCC4038 (97,31%, A7). Essa observação sugere uma possível superestimação de cepas dentro da espécie *A. brasilense*. Além disso, as estirpes D7 e 2A1 agruparam-se com outras espécies, apresentando maior similaridade com *A. argentinense* Az39 (A10, 98,86%) e *A. tabaci* W71 (A8, 97%), respectivamente. Os demais genomas ou não se agruparam com nenhuma espécie ou formaram agrupamentos que carecem de classificação (A6 e A9).

A análise de ANI realizada para o gênero revelou a formação de dois grupos principais, denominados G1 e G2, que exibiram maior similaridade genética entre as espécies. Esses grupos demonstraram semelhanças com a divisão inicial do gênero em *A. lipoferum* e *A. brasilense* (TARRAND; JEFFREY; DÖBEREINER, 1978). O grupo G1 se destacou pela maior variabilidade, apresentando uma média de 90,73% de ANI em relação a *A. lipoferum* Sp59b,

enquanto o grupo G2 exibiu uma maior proximidade genética entre os isolados, com uma média de 94,22% de ANI dos genomas em relação a *A. brasilense* MTCC4038.

A alta similaridade genética entre os diferentes agrupamentos de espécies pode ser responsável pelas incongruências taxonômicas observadas. Em casos como os de *A. baldaniorum* e *A. argentinense*, que embora compartilhem um alto valor de ANI com *A. brasilense*, as diferenças genômicas refletem seus padrões distintos de colonização e metabolismo (DOS SANTOS FERREIRA et al., 2020, 2022). Entretanto, à medida que exploram nichos ecológicos diferentes, a ausência de competição justifica a separação dessas populações em espécies distintas (KONSTANTINIDIS; TIEDJE, 2005). Somado a isso, a complexidade dos genomas de *Azospirillum*, caracterizada por grande plasticidade genômica, tem sido apontada como um obstáculo para uma classificação precisa das espécies (MARONICHE et al., 2017).

A detecção de variação intragenômica significativa nos genes 16S rRNA, principalmente em *A. lipoferum* 4B, também revela sua influência nas inconsistências taxonômicas, uma vez que este é um dos principais marcadores genômicos utilizados para a identificação de novos isolados sequenciados (MARONICHE et al., 2017). Essa complexidade na delimitação das espécies de *Azospirillum* ressalta a necessidade de empregar diferentes abordagens de classificação dos genomas, a fim de obter uma taxonomia precisa para esses organismos. A utilização de múltiplas ferramentas de análise pode ser fundamental para uma compreensão mais abrangente da diversidade genética e biológica desse grupo de bactérias, bem como para o aprimoramento da taxonomia de *Azospirillum*.

4.4 Pangenoma e filogenia do gênero

A análise do pangenoma permite compreender a evolução dos genomas por meio de eventos de perda de genes e aquisição por HGT (CUMMINS et al., 2022). O pangenoma é composto por genes não redundantes presentes em um grupo de organismos, e divide-se em três categorias: o genoma central, contendo os genes presentes em todos os isolados; o genoma acessório, com os genes presentes em duas ou mais cepas; e os genes únicos, presentes em apenas um isolado (BARH et al., 2020; TETTELIN et al., 2005).

Nos 63 isolados do gênero *Azospirillum*, estão presentes 69.598 famílias de genes no pangenoma, sendo que 1.761 (2,53%) são comuns a pelo menos 90% dos genomas (Figura 7.A). A alta diversidade genética visualizada, suporta o conceito de pangenoma aberto ($\alpha = 0,38$), onde um valor $\alpha \le 1$ indica que novas famílias gênicas serão adicionadas à medida que mais genomas de *Azospirillum* são sequenciados (Figura 7.B). Esse modelo também sugere um estilo de vida simpátrico, comum em bactérias que habitam ambientes ricos em fontes de DNA, resultando na aquisição de novos genes por HGT (BROCKHURST et al., 2019; DIENE et al., 2013).

Figura 7 - Análise do pangenoma de *Azospirillum*. (A) Distribuição dos genes no pangenoma em centrais (presentes em 90% dos genomas) e acessórios. (B) A curva cumulativa em vermelho escuro, indica um pangenoma aberto devido ao valor de α =0,38.

A maior parte do genoma acessório de *Azospirillum* é composto por genes únicos e de baixa frequência, totalizando 59.757 famílias gênicas, com uma média de 684 genes exclusivos por genoma. Esses genes de baixa frequência são comumente encontrados em regiões de plasticidade genômica, caracterizadas pela baixa sintenia e alta prevalência de rearranjos genômicos, conforme previamente descrito para *Azospirillum* (WISNIEWSKI-DYÉ et al., 2011, 2012). A abundância de genes únicos também está relacionada com uma variação de habitats colonizados pelas diferentes espécies do gênero, reforçando o papel da HGT na adaptação de nicho e dinâmica ecológica dos isolados (CUMMINS et al., 2022).

A reconstrução da filogenia cgMLST (*core genome multilocus sequence typing*) foi obtida a partir dos SNPs extraídos das famílias gênicas centrais dos genomas. A árvore resultante foi avaliada em consonância com a porcentagem do conteúdo de guanina-citocina

(GC%) e o local de isolamento das cepas. Cinco clados com distribuição diferencial de conteúdo GC% e predominantemente associados a plantas foram identificados (Figura 8). A topologia da árvore filogenética corroborou amplamente a análise de ANI, especialmente em relação a distribuição dos genomas nos grupos G1 e G2.

No clado I, a cepa de *A. thermophilum* CFH 70021, isolada de fontes termais, foi usada para enraizar a árvore por apresentar a maior distância com demais genomas. As outras espécies agruparam-se em quatro subgrupos distintos. No clado II, as linhagens das espécies de *A. agricola* e *A. doebereineae* compartilharam ancestralidade em comum e formaram um grupo irmão com *A. griseum* L-25-5 w-1 e *A. cavernae* K2W22B-5. Essas duas últimas, apresentam os menores valores de conteúdo GC do gênero, além de terem sido isoladas de ambiente aquático.

No clado III, as cepas identificadas pela análise de ANI como pertencentes ao grupo G1 agruparam-se à *Azospirillum* sp. TSO35-2, *A. picis* IMMIB TAR-3 e *A. thiophilum* BV-S. Enquanto em IV, as espécies *A. soli* CC-LY788, *A. rugosum* IMMIB AFH-6 e *Azospirillum* sp. 008365375 agruparam com isolados do grupo G2. Para o clado V, estão agrupadas as espécies com valores mais altos de conteúdo GC, dentre elas *A. oleiclasticum* ROY-1-1-2, isolada de ambiente contaminado com petróleo (agrupada em "Industrial") (WU et al., 2021).

Os clados III e IV apresentaram o maior número de espécies e uma variação no conteúdo GC é observada do grupo G1 (67%) para o G2 (68%). Embora haja pouca variação entre os genomas do mesmo grupo, algumas das cepas classificadas erroneamente como *A. brasilense*, por exemplo, exibem valores mais altos de conteúdo GC (\geq 68,98%) alocando-se mais distantes da cepa tipo representativa para a espécie (*A. brasilense* MTCC4038).

Dos 63 isolados analisados, 41 foram obtidos de associações com uma ampla variedade de plantas (APÊNDICE D). Além disso, observa-se uma associação entre cepas isoladas do ambiente hospitalar com o clado IV. As estirpes de *Azospirillum* sp. ATCC49958 e *Azospirillum* sp. 008365375, originalmente classificadas como pertencentes ao gênero *Roseomonas*, e recuperadas de feridas e outras fontes humanas, apresentam proximidade filogenética com espécies de importância biotecnológica, como *A. brasilense* e *A. argentinense* (HARTMANN et al., 2019; HELSEL et al., 2006). Essa proximidade traz um novo olhar para o gênero *Azospirillum*, uma vez que a HGT de resistência a antimicrobianos representa uma ameaça global e ocorre principalmente entre espécies próximas (SHEPPARD et al., 2016).

Figura 8 - Filogenia cgMLST dos 63 isolados de *Azospirillum*. Em negrito destaca-se as cepas tipo. Os genomas foram avaliados em cinco clados (I-V) e categorizados de acordo com o ambiente para o qual foram isolados, tais quais, aquático, fonte termal, industrial, hospitalar, vegetal e solo. O conteúdo GC% e as informações dos grupos G1, G2 e dos 11 agrupamentos prévios da análise de ANI também foram incluídos.

4.5 Perfil de virulência e resistência

A fim de avaliar o potencial patogênico das cepas de *Azospirillum*, conduziu-se uma investigação para identificar genes associados a fatores de virulência (VF - *Virulence Factors*)

e genes de resistência a antibióticos (ARG - *Antibiotic Resistance Gene*), bem como a sua relação com plasmídeos e ilhas genômicas. Apesar de várias espécies de *Azospirillum* terem sido anteriormente relacionadas a múltiplos replicons, somente a cepa de *A. argentinense* Az19 apresentou um plasmídeo identificado por meio da análise de similaridade com plasmídeos conhecidos (ver metodologia) (KATSY, 2011; MARTIN-DIDONET et al., 2000).

Para ampliar essa avaliação, incluímos os plasmídeos de 13 genomas completos de *Azospirillum* previamente anotados no GenBank (Tabela 1). A prevalência de genes relacionados a fatores de virulência e a resistência a antibióticos em ilhas genômicas e plasmídeos foi avaliada por meio da análise do viruloma e resistoma para o gênero.

Espécie	Estirpe	Nº de acesso	Plasmídeos
A. argentinense	Az19	GCA_008369925.1	1
A. argentinense	Az39	GCA_000632475.2	5
A. argentinense	MTCC4035	GCA_005222165.1	7
A. brasilense	MTCC4038	GCA_005222145.1	5
Azospirillum sp.	2020WEIHUAK	GCA_022023855.1	7
Azospirillum sp.	MTCC4039	GCA_005222205.1	4
Azospirillum sp.	4B	GCA_000283655.1	6
A. oryzae	KACC 14407	GCA_013347285.1	7
A. ramasamyi	M2T2B2	GCA_003233655.1	6
Azospirillum sp.	B510	GCA_000010725.1	6
Azospirillum sp.	TSA2S	GCA_004923315.1	3
Azospirillum sp.	TSH100	GCA_004923295.1	2
Azospirillum sp.	TSH58	GCA_003119115.1	7
A. thermophilum	CFH 70021	GCA_001315015.1	5

 Tabela 1 - Relação de genomas com plasmídeos identificados.

No viruloma, são identificados 58 genes, dos quais 20 compõem o viruloma central, ou seja, estão presentes em pelo menos 90% dos genomas. O viruloma central está predominantemente associado aos mecanismos de evasão imune, motilidade e adaptação ao estresse ambiental. Em relação à motilidade, os genomas exibem genes relacionados à

regulação da quimiotaxia (*che*B e *che*Y) (PORTER; WADHAMS; ARMITAGE, 2011), formação do flagelo polar (*flg*CG) (SAIJO-HAMANO et al., 2004) e sua glicosilação (*pse*B e *nue*B) (MOENS; MICHIELS; VANDERLEYDEN, 1995; ROSSI et al., 2016).

No que diz respeito à evasão imune, são identificados componentes dos lipopolissacarídeos (LPS), como *kds*AB e *acp*XL, e outros associados à biossíntese do lipídio A em outras cepas bacterianas (RAETZ; WHITFIELD, 2002). Adicionalmente, foram encontrados genes relacionados à biossíntese de glicosídeos, como ramanose (*rml*AB) e fucose (*gmd* e *flc*). Também foram identificados genes de resposta ao estresse ambiental, incluindo *car*AB, *ure*BG, *ka*tA e *sod*B, com destaque para *ka*tA e *sod*B, que estão envolvidos no alívio ao estresse oxidativo (FUKAMI; CEREZINI; HUNGRIA, 2018; GARCÍA et al., 2020). A presença desses fatores no viruloma central do gênero sugere que esses mecanismos são respostas essenciais para a sobrevivência e adaptação de *Azospirillum*.

O sistema de secreção do tipo VI (T6SS) foi o único identificado nos genomas, sendo que o gene *tss*B está localizado no viruloma central e os demais no viruloma acessório. Os genes relacionados ao T6SS estão agrupados em cinco categorias filogenéticas distintas (HSI-I à HSI-V), cada uma desempenhando funções específicas dentro das bactérias (BERNARD et al., 2010). Em *Azospirillum*, os genes estão associados aos grupos HSI-I e HSI-III, os quais são caracterizados por apresentarem atividades relacionadas às interações interbacterianas e à virulência em animais e plantas, respectivamente (BERNAL; LLAMAS; FILLOUX, 2018).

Dentre os genes presentes, *tss*C (HSI-III, 68%) e *tss*H (HSI-I, 46%; HSI-III, 39%) foram os mais prevalentes nos genomas analisados. O cluster *tss*BC (ou *vip*AB, HSI-I) está envolvido na formação da bainha contrátil, enquanto o gene *tss*H está relacionado à proteína ClpV, uma ATPase da família AAA+ responsável pelo fornecimento de energia ao aparelho secretor (BERNAL; LLAMAS; FILLOUX, 2018). A cepa *A. argentinense* Az39 foi descrita anteriormente por apresentar esse sistema ativo (CASSAN et al., 2021). A presença do gene *tss*K (HSI-I), envolvido na polimerização do tubo, foi identificado nessa bactéria, o qual também foi observado em outras linhagens da espécie, com exceção de Az19, sugerindo uma correlação entre a presença do sistema T6SS e as cepas de *A. argentinense*.

Figura 9 - Composição do viruloma acessório. Genes presentes em azul, em ilhas genômicas em amarelo e nos plasmídeos em rosa claro. As famílias gênicas do sistema de secreção do tipo IV estão destacadas em vermelho.

Relacionados à síntese de sideróforos, foram identificados genes para a produção de pioverdina (*pvd*ES, *pvd*A e *pvd*H) e enterobactina (*ent*ABE), principalmente no clado IV (CROSA; WALSH, 2002). Adicionalmente, genes responsáveis pela síntese de acinetobactina (*bau*ABCDE) foram identificados nas cepas de *A. argentinense* MTCC4035 e *A. agricola* R1C, enquanto para pioquelina (*pch*BD), em *Azospirillum* sp. 4B, *A. humicireducens* SgZ-5 e *A. agricola* CC-HIH038 (Figura 9) (CROSA; WALSH, 2002).

O resistoma de *Azospirillum* é composto por 34 genes. No resistoma central, encontramse apenas três genes, incluindo os componentes gênicos B e C, associados à bomba de efluxo MuxABC-OpmB, de resistência a múltiplos fármacos, e o gene *gol*S, responsável pela regulação de bombas de efluxo em bactérias patogênicas (MIMA et al., 2009; PONTEL et al., 2007). No resistoma acessório, predominam os genes associados ao efluxo de antibióticos (Figura 10). Esses genes pertencem principalmente à família de transportadores de resistêncianodulação-divisão celular, incluindo *acr*AB, *ade*B, *ade*G, *ceo*B e *mex*K (FERNANDO; KUMAR, 2013). Além disso, também foram encontrados os genes *ros*AB da *Major Facilitator Superfamily* (MFS), que desempenham um papel na resistência a peptídeos antimicrobianos catiônicos (KLENOTIC et al., 2021).

O gene soxR, responsável por induzir a bomba de efluxo MexGHI-opmD, está presente em 84% dos genomas. No entanto, sua função pode estar associada à regulação de outros transportadores, uma vez que apenas *mexI* estava presente (PALMA et al., 2005). Em condições de estresse, o gene *sox*R regula positivamente a bomba de efluxo *acr*AB em bactérias fitopatogênicas (WASH et al., 2022). Além disso, em *Nitrospirillum amazonense* CBAmC, o transportador de resistência à acriflavina (*acr*AB) oferece tolerância ao estresse oxidativo e às mudanças de pH, indicando que esses genes podem desempenhar funções semelhantes em *Azospirillum* (TERRA et al., 2020).

No resistoma acessório, foi observada uma correlação notável no grupo G2 do clado IV para as enzimas N-acetiltransferase aminoglicosídeos (AAC) e aminoglicosídeo fosfotransferases (APH), que são inativadoras de aminoglicosídeos (GARNEAU-TSODIKOVA; LABBY, 2016). Com exceção de *A. halopraeferens* DSM 3675, todos os genes AAC (aac(3)-IIc, aac(3)-IIIc, aac (3)-IIIb, aac (6')-Ic e aac (6')-Iag) estão presentes exclusivamente em cepas do grupo G2. Quanto aos genes relacionados ao APH, aph(3')-IIa é encontrado apenas em *A. thermophilum* CFH 70021, enquanto aph(6)-Ic está presente em quatro genomas, incluindo as duas cepas de *A. brasilense*.

Nos clados II, III e V do gênero *Azospirillum*, identifica-se a presença do gene *mex*K, o qual está envolvido no efluxo de substâncias como tetraciclina, macrolídeos e triclosan. Em bactérias do solo, a correlação entre a presença do gene *mex*K e a contaminação ambiental por metais-traço é notável, uma vez que os genes associados ao efluxo de multidrogas conferem resistência não apenas a antibióticos, mas também a outros compostos (AMARASEKARA et al., 2023).

Figura 10 - Composição do resistoma acessório. Genes presentes em azul, enquanto os localizados em ilhas genômicas e plasmídeos estão destacados em amarelo e rosa claro, respectivamente.

Por outro lado, os genes relacionados à resistência à fluoroquinolona (*oqxB*), triclosan (*triC*), beta-lactâmicos (regulador *nmcR*) e cloranfenicol (*cat* e *catB2*) estão predominantemente associados ao clado IV. A cepa de *Azospirillum* sp. MTCC4039 (grupo G2), isolada do ambiente vegetal, demonstrou um maior número de ARGs, os quais também

estavam localizados em plasmídeo. Esse padrão foi observado de forma análoga nos resultados do viruloma.

4.6 Potencial biotecnológico das espécies de Azospirillum

O potencial biotecnológico dos isolados de *Azospirillum* foi inferido com base na distribuição do conteúdo genômico associado às categorias de biofertilização, bioestimulação e biorremediação. Para essa análise, foi atribuída a ontologia gênica disponível no banco de dados do PLaBAse, conforme descrito na metodologia. O mapeamento das características gênicas de promoção do crescimento vegetal (PGPT), nos 63 isolados de *Azospirillum* possibilitou a identificação de diferentes genes com funções putativas.

Através da análise de enriquecimento, são evidenciados maior diversidade genética, bem como um número maior de cópias gênicas associadas aos mecanismos nos diferentes genomas (Figura 11). No que diz respeito à biofertilização, os genomas apresentam mecanismos associados ao metabolismo do nitrogênio, ferro, fósforo e potássio. Para a bioestimulação, estão presentes genes associados a produção dos fitormônios de auxina e citocinina, além de outros compostos estimulantes. Embora a biorremediação tenha se mostrado uma das características menos enriquecida, os genomas apresentaram genes relacionados a bombas de efluxo de resistência à metais traço e ao metabolismo de xenobióticos.

A distribuição dos grupos taxonômicos evidencia uma correlação significativa com o padrão de estratégias gênicas, com uma maior ocorrência de PGPTs no clado III (Figura 12.A). É interessante notar que esse clado apresentou uma frequência superior ao clado IV, que inclui as principais espécies do gênero, como *A. argentinense*, cujas cepas estão presentes em inoculantes disponíveis no mercado (CASSÁN et al., 2020). A maior variedade de mecanismos está distribuída entre o clado III, enquanto no clado IV, destaca-se a presença de importantes rotas metabólicas de interesse biotecnológico, que serão discutidas adiante.

Figura 11 - Análise de enriquecimento dos mecanismos de biofertilização, bioestimulação e biorremediação em *Azospirillum*. As características enriquecidas estão representadas em vermelho e as esgotadas em azul.

No que se refere à distribuição das cepas por ambiente, os isolados de ambientes vegetais presentaram a maior frequência gênica de PGPTs (Figura 12.B). Por outro lado, os genomas de ambientes aquáticos exibiram os menores valores, seguidos pelos de ambientes clínicos. Esses resultados se correlacionam com um estudo conduzido por Wisniewski-Dyé e

colaboradores (2011), que demonstraram que quase metade dos genes em *A. baldaniorum* Sp245 e *A. lipoferum* 4B, bactérias associadas a raízes vegetais, codificavam funções críticas para a adaptação e interação rizosfera-planta (WISNIEWSKI-DYÉ et al., 2011).

Figura 12 - Frequência relativa de PGPT. (A) Frequência relativa de PGPTs por clados. (B) Distribuição da frequência de PGPTs em relação aos ambientes dos genomas.

4.6.1 Biofertilização

A análise dos 63 genomas de *Azospirillum* revelou a presença de diversos genes associados a enzimas, transportadores e proteínas reguladoras envolvidos nos mecanismos de biofertilização para nitrogênio, fósforo, potássio e ferro. Com relação ao nitrogênio (N), a ausência dos genes essenciais à FBN evidencia que esse processo não é universal no gênero *Azospirillum*, como observado em *Azospirillum* sp. SYSU D00513 e *A. griseum* L-25-5-w1 (Figura 13). Em contrapartida, nos demais genomas, foram identificados os genes *nif*HDK, responsáveis pelas subunidades da nitrogenase, e os genes *nif*BENUSVWQ, que desempenham um papel crucial na montagem e incorporação dos átomos de ferro e molibdênio, além do regulador *nif*A (Figura 13). De maneira variável, a presença diferencial dos genes *nif*F (40%) e

*nif*J (43%), relacionados à transferência de elétrons, foi observada entre os clados analisados (Figura 13).

Adicionalmente, em todas as cepas de *A. baldaniorum*, *Azospirillum* sp. BR11796 e *Azospirillum* sp. TSO22-1, estão presentes os genes responsáveis pela codificação da nitrogenase alternativa dependente de vanádio (*vnf*DEGK; Figura 13). Esses genes foram previamente caracterizados em *A. baldaniorum* Sp245, e neste estudo, averiguamos a sua presença nos demais genomas (DE SOUZA; DE OLIVEIRA PEDROSA, 2015).

Nos genomas, também se encontram os genes responsáveis pela transferência de elétrons para a nitrogenase (*fix*ABCX) e pela enzima citocromo c oxidase (*fix*NOQP), essencial para a respiração em condições microaerofílicas (KOPAT et al., 2017; SPEROTTO et al., 2004). O ativador transcricional *fix*K mostrou-se associado ao clado IV (presente em 13 genomas), sendo encontrado em todas as cepas de *A. argentinense* e *A. baldaniorum* (Figura 13).

Quanto aos componentes regulatórios presentes nos genomas, observam-se o fator sigma σ^{54} (*ntr*A), o sistema NtrB/NtrC (*ntr*B e *ntr*C), as proteínas P_{II} (*gln*B) e P_z (gene parálago *gnlZ*), bem como o gene *gln*D relacionado à modificação pós-traducional dessas proteínas (DE ZAMAROCZY, 1998). Ademais, os genes *dra*T e *dra*G, envolvidos na regulação metabólica através da ribosilação reversível de ADP, também estão presentes (STEENHOUDT; VANDERLEYDEN, 2000). Esses genes e outros relacionados a essas vias podem ser visualizadas na Figura 13.

A assimilação de amônia em *Azospirillum* spp. ocorre principalmente em baixa concentração de NH₄⁺ pela via GS-GOGAT, pela via GS-GOGAT, com a participação das enzimas glutamina sintetase (GS; gene *gln*A), glutamato sintetase (GOGAT; *gtl*B e *gtl*D) e da adeniltransferase inativadora da GS em resposta ao NH₄⁺ (gene *gnl*E; Figura 14). Uma segunda via envolve a sequência gênica que codifica a enzima glutamato desidrogenase (GDH; gene *gdh*A), ativada em resposta às elevadas concentrações de amônio, e está presente exclusivamente nos genomas do clado IV (Figura 14).

Figura 13 - Análise gênica da fixação biológica do nitrogênio em *Azospirillum*. Em amarelo, os genes presentes nos genomas. Presente na análise, estão presentes os genes referentes aos complexos hidrogenases, complexos nitrogenases, genes *fix* e os genes de regulação.

Os genomas de *Azospirillum* spp. apresentaram diversos genes associados à redução de N₂ via óxido nítrico e óxido nitroso (Figura 14). A emissão de nitrito e óxido nítrico é reconhecida como um mensageiro chave nas interações bactéria-planta, desempenhando um papel crucial no desenvolvimento radicular (ARRUEBARRENA DI PALMA et al., 2013). Esses efeitos já foram observados em cepas de *Azospirillum*, e a distribuição desses genes pelo gênero, especialmente entre os membros do clado IV, destaca uma clara associação entre *Azospirillum* spp. e sua produção (AMENTA et al., 2015; CREUS et al., 2005). Outros genes

relacionados à conversão de fontes alternativas de nitrogênio, como a ureia, também estão presentes nos genomas, complementando a avaliação do viruloma (Figura 14).

Figura 14 - Metabolismo de outras fontes nitrogênio. Os genomas contêm genes relacionados ao metabolismo de amônia, nitrato/nitrito e ureia.

A biofertilização do fósforo (P) pode ocorrer por meio da mineralização de P-orgânico (Po) ou da solubilização de P-inorgânico (Pi) (GAMALERO; GLICK, 2011). No que diz respeito à mineralização, os genomas estão associados a diversas atividades, incluindo transporte (*pst*SCAB), regulação do metabolismo de P (*pho*RU), armazenamento por síntese de polifosfato (*ppk* e *ppk*2), e a degradação por exopolifosfatases (APÊNDICE F).

Os genes relacionados à mineralização de Po incluem fosfatase alcalina (*pho*A em 2 genomas e *pho*D em 4 genomas) e uma enzima C-P liase (*phn*GHIJKLMP), responsável pela degradação de fosfonato em fosfato e alcano, presente em *A. soli* CC-LY788 e *Azospirillum* sp. SYSUD00513 (APÊNDICE F). Além disso, encontram-se transportadores de fosfonato (*phn*CDE; 6 genomas), fosfonatases relacionadas à degradação de fosfonoacetato (gene *phn*A) em *A. halopraeferens* DSM3675 e fosfonoacetaldeído (gene *phn*X), principalmente, em membros do clado III (SURIN; ROSENBERG; COX, 1985). Esses resultados associam principalmente *A. soli* CC-LY788 e cepas do clado V à capacidade de mineralizar Po.

A solubilização do fosfato inorgânico no solo por bactérias ocorre por meio da secreção de ácidos orgânicos e inorgânicos, os quais dissolvem o material fosfático ou quelam cátions que acompanham o ânion fosfato (GAMALERO; GLICK, 2011). Essa capacidade de produção de macromoléculas também é reconhecida como responsável pela solubilização do potássio (K) (MEENA; MAURYA; VERMA, 2014). Nos genomas, foram identificados genes relacionados a diferentes ácidos orgânicos, incluindo ácidos glucônico, glioxílico, succínico, galacturônico, málico, acético, pirúvico e carboxílico (APÊNDICE G).

Dentre esses, o ácido glucônico destaca-se como o principal responsável pela solubilização do fosfato e do potássio, processo documentado anteriormente em espécies como *A. lipoferum, A. halopraeferens* e *A. brasilense* (RODRIGUEZ et al., 2004). Relacionados à sua produção, foram identificados genes associados às enzimas glicose desidrogenase (*gdh*AB em 46%; *gadh*3 em 12%, e *gcd*B em 9,5%) e, em menor quantidade nos genomas, a gluconato desidrogenase (*gnd* em 19% dos genomas; APÊNDICE G). Essas enzimas são essenciais para a conversão de glicose em ácido glucônico (DE WERRA et al., 2009; OTEINO et al., 2015). O agrupamento gênico responsável pela síntese da pirroloquinolina quinona (PQQ; genes *pqq*BCDELI), um cofator em diversas desidrogenases bacterianas, também foi identificado nos genomas (APÊNDICE G) (CHOI et al., 2008). No entanto, o gene *pqq*A, que compõe o cluster, não foi detectado em nenhum dos genomas examinados.

A produção de ácidos inorgânicos nos genomas é mediada por genes envolvidos na síntese do ácido sulfídrico (*cys*CIJHND; APÊNDICE H). Além disso, a solubilização de K é destacada pela presença dos principais sistemas de captação do nutriente (Kdp e Trk) e de um sistema menor (Kup). Os sistemas Kdp e Kup estão amplamente distribuídos, enquanto o

sistema Trk está ausente no clado II e em cepas do clado III (APÊNDICE H). A mitigação dos efeitos prejudiciais do estresse salino foi previamente documentada em cultivares de milho inoculadas com *Azospirillum* spp., onde a relação entre a produção de ácidos orgânicos e os transportadores de sódio, potássio e cálcio foi associada a esses efeitos (HAMDIA; SHADDAD; DOAA, 2004).

Relacionado ao ferro (Fe), nos genomas estão presentes genes relacionados à síntese de sideróforos e à captação de Fe (APÊNDICE I). Ampliando a análise do viruloma, o uso do PlaBAse possibilitou a identificação abrangente de outras sequências genéticas relacionadas à produção de sideróforos. Dentre os resultados, destacam-se os genes associados à produção de petrobactina (*asb*ABCEF, presentes em 9 genomas) e o cluster completo para a pioquelina (*pch*ABCDEFR) em *Azospirillum* sp. 4B (ver APÊNDICE I) (CROSA; WALSH, 2002).

Genes relacionados à captação de sideróforos de hidroxamato férrico (*fhu*BCDE) e de bacilobactina (*feu*ABD) também estão presentes (GABALLA; HELMANN, 2007; MIKAEL et al., 2002). Para a captação de Fe, estão presentes o sistema TonB (*exb*B, *exb*D e *ton*B), o transportador de membrana específico para ferro (*afu*ABC) e o cluster gênico para a biossíntese de heme (*hem*ABCDFLN) (APÊNDICE I) (BEDDEK et al., 2004; CHOBY; SKAAR, 2016).

Estudos anteriores destacaram a correlação entre a produção de sideróforos por *Azospirillum* as atividades de biocontrole (TORTORA; DÍAZ-RICCI; PEDRAZA, 2011). A prevenção da antracnose em culturas de morango, causada pelo fungo *Colletotrichum acutatum*, foi atribuída à produção dessas macromoléculas pela estirpe *A. baldaniorum* REC3 (SHAH; KARKHANIS; DESAI, 1992; TORTORA; DÍAZ-RICCI; PEDRAZA, 2011). Adicionalmente, na análise comparativa para o gênero realizada nesse estudo, foi evidenciada a presença de genes relacionados a cinco sideróforos distintos. Notavelmente, destacam-se os genomas de *A. argentinense* MTCC4035, apresentando genes associados a pioverdina e enterobactina (Figura 9), enquanto *Azospirillum* sp. 4B mostra um potencial promissor com genes para pioquelina e petrobactina (APÊNDICE I).

4.6.2 Bioestimulação

O potencial bioestimulante das espécies de *Azospirillum* foi avaliado por meio da identificação de genes relacionados a fitormônios, compostos orgânicos voláteis e carotenoides de poliaminas (Figura 15). Em relação aos fitormônios, os genomas apresentaram genes relacionados à síntese de citocinina (genes *dap*F, *hfl*X, *log*, *rec*AX), incluindo a enzima limitante na biogênese de terpenoide, isopentenil transferase (*mia*AB) (CHEN et al., 2017). Um único gene (*fad*A), relacionado à síntese de ácidos graxos intermediários na produção de jasmonato, estava presente, ao passo que algumas vias de produção de auxina foram identificadas nos genomas (Figura 15).

Nos genomas analisados, a produção de AIA através da via do ácido indol-3-pirúvico foi identificada exclusivamente no clado IV e nas cepas de *A. oleiclasticum* ROY-1-1-2 e *Azospirillum* sp. TSO22-1 (Figura 15). Embora em outros genomas do gênero estejam presentes os genes relacionados à primeira (genes *asp*C, *bio*A, *his*C, *pat*A e *puu*E) e última etapa (*ald*H e *ald*B) dessa via, o gene que codifica a enzima-chave indol-3-piruvato descarboxilase (gene *ipdC/ppd*C) foi identificado apenas nos genomas mencionados anteriormente (PATTEN; BLAKNEY; COULSON, 2013).

Paralelamente à IPA, a última etapa da via da triptamina também envolve a atuação de enzimas aldeído desidrogenases (SPAEPEN; VANDERLEYDEN, 2011). No contexto da via da indol-3-acetonitrila/IAN, estão presentes os genes para enzimas nitrilases (*nit e yhcX*; presentes em 31 genomas), nitrila hidratases (genes *nth*AB; 24 genomas) e amidase (*ami*E; 60 genomas; Figura 15). No entanto, em nenhum dos genomas foram identificados os genes relacionados à conversão do triptofano à IAN, destacando a predominância de vias incompletas para a biossíntese de auxina em *Azospirillum*. Em um estudo anterior, resultados semelhantes foram observados em bactérias do solo, correlacionando o ambiente rizosférico a um reservatório de metabólitos intermediários dessas vias (ZHANG et al., 2019).

Adicionalmente, uma via putativa que implica a conversão da molécula de indol em AIA através da enzima AIA-acetiltransferase (gene *ysn*E) está amplamente distribuída nos genomas (Figura 15). eu papel na produção de auxina foi inicialmente descrito em A. brasilense, e o gene *ysn*E foi identificado no operon *trp* de biossíntese do triptofano (ZIMMER; APARICIO; ELMERICH, 1991). Embora pouco explorada, em *Bacillus amyloliquefaciens* FZB42, portadores de deleções no gene, relacionaram o gene à síntese da auxina (IDRIS et al., 2007).

Figura 15 - Bioestimulação em *Azospirillum*. Os genes presentes nos genomas estão destacados em amarelo e os ausentes em azul.

Dentre os compostos orgânicos voláteis identificados em *Azospirillum*, estão os genes responsáveis pela produção de acetoína (*bud*AB) e 2,3-butanodiol (*bud*C e *but*AB), os quais induzem mecanismos de resistência sistêmica nas plantas (Figura 15) (PING; BOLAND, 2004). As enzimas envolvidas na síntese da acetoína são a α -cetolactato sintase (*bud*A) e a α -cetolactato descarboxilase (*bud*B), que pode ser reduzida a 2,3-butanodiol pela ação de uma redutase (*bud*C) (YANG et al., 2014). Nos genomas, apenas *A. halopraeferens* DSM3675 apresentou o gene *bud*A, enquanto o gene *bud*C está predominantemente presente no clado III.

Por outro lado, outros genes relacionados à butanodiol desidrogenases (*but*AB) são identificados em 48 genomas.

Além disso, as sequências gênicas para a síntese (*spe*BCDE) e transporte (*pot*ABCDFGHI) de espermidina também estão amplamente distribuídas no gênero (Figura 15). A produção dessa poliamina está associada às estratégias de sobrevivência ao estresse abiótico, e sua presença já foi anteriormente relatada em espécies de *Azospirillum* (PERRIG et al., 2007; THULER et al., 2003). Esses achados sugerem que as espécies de *Azospirillum* podem ser uma fonte potencial de bioestimulantes para as plantas, especialmente às cepas pertencentes ao clado IV que apresentam a capacidade de sintetizar AIA a partir do triptofano.

4.6.3 Biorremediação

A habilidade de resistir a ambientes contaminados e metabolizar poluentes, observada em certos grupos de bactérias, tornou a biorremediação uma estratégia promissora para a recuperação de solos e áreas contaminadas (CHITARA; CHAUHAN; SINGH, 2021). Nesse contexto, a capacidade potencial de *Azospirillum* spp. atuar como agentes de biorremediação foi investigada por meio da identificação de genes associados ao metabolismo de metais traço e xenobióticos.

Os genomas revelaram associação com a tolerância a metais como cobalto, cádmio, mercúrio, cobre e arsênio (Figura 16). No que diz respeito ao cobalto, os genes prevalentes nos genomas incluem transportadores (*cbi*P e *cor*C) e proteínas dependentes desse elemento em vias metabólicas (genes *cbi*AB, *cbi*CDFGHJL, *cob*AC, *cob*S e *cob*U) (CHELLAPANDI, 2011; EITINGER, 2013). Nas espécies de *A. ramasamyi* M2T2B2 e *A. halopraeferens* DSM3675, são identificados transportadores adicionais em seus genomas (*cbi*Q e *cbi*MNO; Figura 16).

Amplamente distribuído nos genomas, está o transportador de cádmio (Cd) da família das ATPases do tipo CPx (*cad*A) e o regulador transcricional (*cad*C; Figura 16) (TSAI; YOON; LYNN, 1992). Observa-se um enriquecimento pronunciado do gene cadA nos genomas de *Azospirillum* sp. B21 e *Azospirillum* sp. ATCC49958, sugerindo uma possível resposta à contaminação ambiental por metais (LI et al., 2022). Os genes responsáveis pela resistência ao cádmio, zinco e cobalto (*czc*BCD) também estão presentes em 22 genomas (NIES, 1992). Em estudos com plântulas de cevada inoculadas com *A. lipoferum* 137 e tratadas com Cd, observou-

se que, apesar dos efeitos benéficos da interação, não houve uma redução significativa do metal nas raízes (BELIMOV; DIETZ, 2000). Esses resultados indicam a capacidade de *Azospirillum* em tolerar o ambiente e promover a saúde vegetal por meio de outras vias, apesar de sua eficácia limitada na biorremediação.

Figura 16 – Tolerância aos metais traço em *Azospirillum*. Nos genomas são evidenciados em amarelo a presença de genes relacionados a tolerância do cobalto, cádmio, mercúrio, cobre e arsênio.

Apenas dois genes de resistência ao mercúrio foram identificados, tais quais o translocador de íons de mercúrio (*mer*T) e o regulador (*mer*R), presentes em *Azospirillum* sp. YIMDDC1 e *Azospirillum* sp. ATCC49958 (BARKAY; MILLER; SUMMERS, 2003). Nos

demais genomas do gênero (clados V, IV e I), apenas o gene regulador foi evidenciado (Figura 16).

Prevalentes nos genomas estão os genes de resistência ao cobre relacionados à captação (*cut*A), extrusão por ATPases (*cop*A) e regulação (*cop*S, *cue*R e *cus*R; Figura 16) (WILLIAMS et al., 2020). Em menor quantidade, são encontradas duas chaperonas (*cop*Z e *cus*F; presentes em 8 genomas) que atuam na extrusão do citoplasma para o periplasma, reduzindo as formas tóxicas do metal, e um sistema antiporte de próton-cátion CusABC (*cus*AB; em 6 genomas) (DÁVALOS; GARCÍA-DE LOS SANTOS, 2023; GIACHINO; WALDRON, 2020). Adicionalmente, em *A. rugosum* IMMIB AFH-6, são evidenciados outros genes associados à resistência ao cobre, demonstrando uma relação mais pronunciada com a resistência a esse elemento (Figura 16).

A tolerância ao arsênio (As) em *Azospirillum* spp. é caracterizada pela presença das vias de oxidação do arsenito e de redução do arsenato (CHANG, 2015; CHANG; REN; KIM, 2008). O gene regulador da via de oxidação (*aoxS*) está presente em todos os genomas, enquanto apenas sete genomas apresentaram as subunidades codificantes da oxidase (*aoxAB*; Figura 16) (CHANG, 2015). Em 14 genomas, são observados os genes necessários para a redução do arsenito (*arsRBC*; Figura 16). Nesse processo, a regulação é mediada pelo repressor ArsR, que se liga à região promotora de *ars*, enquanto a proteína ArsB realiza o transporte de íons de As para fora da célula (CAI et al., 2009). Adicionalmente, foram identificados dois genes (*ars*C e *ars*C1) relacionados à atividade redutase (CAI et al., 2009).

Relacionados à degradação de xenobióticos, os genomas apresentam predominantemente genes envolvidos na metabolização de compostos nitroaromáticos (nemA), cicloalcanos (adh e adhEPC), alifáticos halogenados (dehHI), e no metabolismo da atrazina (atzF; Figura 17) (ESQUIROL et al., 2018; OPPENTOCHT; POELARENDS, 2003; VALLE et al., 2012; WANG et al., 2018). Este último, um herbicida comum em corpos d'água devido aos processos de escoamento e lixiviação, mostra a presença adicional do gene atzE em espécies isoladas de ambientes aquáticos, como A. cavernae K2W22B-5 e A. griseum L-25-5-W-1 (GRAYMORE; STAGNITTI; ALLINSON, 2001). A detecção desses genes em bactérias sugere uma resposta à elevada contaminação ambiental pela atrazina e seu subsequente metabolismo pelas bactérias (SHERCHAN; BACHOON, 2011).

Figura 17 - Genes relacionados a vias de degradação de xenobióticos em *Azospirillum*. A representação à direita indica os locais de isolamento, abrangendo ambientes aquáticos (azul), fontes termais (vermelho), áreas industriais (roxo), instalações hospitalares (rosa), ecossistemas vegetais (verde) e solos (laranja).

No clado III, observam-se também os genes associados ao metabolismo do naftaleno (*nag*GH; presentes em 7 genomas) e à conversão de benzoato em catecol, conduzida pelas enzimas benzoato dioxigenase (*ben*ABC) e benzoato diol desidrogenase (*ben*D; Figura 17) (FUENMAYOR et al., 1998; NEIDLE et al., 1991). Esses últimos também foram identificados nas cepas de *A. formosense* Nfb7 e *Azospirillum* sp. 2020WEHUAK do clado IV. Outros genes compartilhados entre quatro cepas pertencentes a ambos os clados incluem *bbs*BDH, envolvidos na via metabólica do tolueno (VON HORSTEN et al., 2022).

Nos genomas das cepas de *A. agricola*, *A. halopraeferens* DSM3675, *Azospirillum* sp. TSO22-1 e *A. oleiclasticum* ROY-1-1-2, é observada uma relação pronunciada com as vias metabólicas de hidrocarbonetos aromáticos. Nessas cepas, estão presentes genes relacionados à degradação do tolueno e derivados (*xyl*CEFGHI) e compostos fenólicos (*dmp*LMNOP e *mhp*DEF; Figura 17) (INOUE et al., 1995; PARALES et al., 2008; RAJKUMARI; PAIKHOMBA SINGHA; PANDEY, 2018; ZHOU et al., 2016). Na bactéria *A. oleiclasticum* ROY-1-1-2, isolada de uma mistura de produção de petróleo, a capacidade de degradação do petróleo bruto foi constatada *in vitro*, e em seu genoma também são identificados genes para a degradação do bifenil policlorado (*bph*HIJ) e isopropilbenzeno (*cmt*CD) (HOFER; BACKHAUS; TIMMIS, 1994; OHTA; KUDO; MAEDA, 2001; WU et al., 2021). Outros genes presentes nos genomas podem ser visualizados na Figura 17.

Em suma, a análise genômica de *Azospirillum* spp. evidenciou o papel significativo desempenhado por membros desse gênero como promotoras do crescimento vegetal. A habilidade de tolerar e metabolizar poluentes, alinhada ao potencial biofertilizante e bioestimulante, destaca uma ampla variedade de aplicações para essas espécies na melhoria da qualidade do solo e das plantas. Essas características conferem a essas bactérias um papel crucial como aliadas na promoção da saúde ambiental e no desenvolvimento de práticas agrícolas mais sustentáveis.

5 CONCLUSÃO

• A delimitação do gênero e a análise de identidade revelaram classificações equivocadas em relação às espécies.

• A análise do pangenoma de *Azospirillum* demonstra uma notável diversidade genética, destacando-se principalmente por genes de baixa frequência e únicos para as espécies.

• Dentre os principais fatores de virulência em *Azospirillum* destacam-se os mecanismos de evasão imune, correlacionados ao LPS, a motilidade e a capacidade de adaptação ao estresse. Essas descobertas fornecem indícios cruciais sobre as interações entre as bactérias desse gênero e as plantas hospedeiras.

• O resistoma é composto, em grande parte, por bombas de efluxo.

• A análise comparativa dos genes associados ao crescimento vegetal revelou de maneira significativa a notável capacidade de biofertilização, bioestimulação e biorremediação em diversas espécies do gênero, ao mesmo tempo que destacou correlações entre os diferentes clados e as cepas provenientes de ambientes vegetais, nas quais esses mecanismos se manifestaram com maior frequência.

• As análises comparativas realizadas neste estudo abrem novas perspectivas para a identificação de espécies e estirpes promissoras que têm potencial para serem utilizadas na formulação de novos inoculantes.

REFERÊNCIAS

ALCOCK, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. **Nucleic acids research**, v. 48, n. D1, p. D517–D525, 2020.

ALEXANDRE, G. Chemotaxis in Azospirillum. Em: CASSÁN, F. D.; OKON, Y.; CREUS, C. M. (Eds.). Handbook for Azospirillum: Technical Issues and Protocols. Knoxville: Springer, 2015.

AMARASEKARA, N. R. et al. Exploring the co-occurrence of antibiotic, metal, and biocide resistance genes in the urban agricultural environment. **Journal of Agriculture and Food Research**, v. 11, p. 100474, 1 mar. 2023.

AMENTA, M. et al. Nitric Oxide in Azospirillum and Related Bacteria: Production and Effects. Em: **Handbook for Azospirillum**. Cham: Springer International Publishing, 2015. p. 155–180.

ANANDHAM, R. et al. Azospirillum ramasamyi sp. nov., a novel diazotrophic bacterium isolated from fermented bovine products. **International journal of systematic and evolutionary microbiology**, v. 69, n. 5, p. 1369–1375, 2019.

ARRUEBARRENA DI PALMA, A. et al. Denitrification-derived nitric oxide modulates biofilm formation in *Azospirillum brasilense*. **FEMS Microbiology Letters**, v. 338, n. 1, p. 77–85, jan. 2013.

ASSMUS, B. et al. In Situ Localization of Azospirillum brasilense in the Rhizosphere of Wheat with Fluorescently Labeled, rRNA-Targeted Oligonucleotide Probes and Scanning Confocal Laser Microscopy. **Applied and Environmental Microbiology**, v. 61, n. 3, p. 1013–1019, mar. 1995.

BALDANI, J. I.; BALDANI, V. L. D. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. **Anais da Academia Brasileira de Ciências**, v. 77, n. 3, p. 549–579, set. 2005.

BARBIERI, P. et al. Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. **FEMS Microbiology Letters**, v. 36, n. 1, p. 87–90, 1 ago. 1986.

BARH, D. et al. **Pan-genomics: Aplications, Challenges and Future Prospects**. [s.l: s.n.]. v. 1

BARKAY, T.; MILLER, S. M.; SUMMERS, A. O. Bacterial mercury resistance from atoms to ecosystems. **FEMS microbiology reviews**, v. 27, n. 2–3, p. 355–384, 2003.

BASHAN, Y.; DE-BASHAN, L. E. How the plant growth-promoting bacterium azospirillum promotes plant growth-a critical assessment. **Advances in Agronomy**, v. 108, n. C, p. 77–136, 2010.

BASHAN, Y.; HOLGUIN, G.; DE-BASHAN, L. E. Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, ago. 2004.

BASHAN, Y.; LEVANONY, H. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. **Canadian Journal of Microbiology**, v. 36, n. 9, p. 591–608, 1 set. 1990.

BEDDEK, A. J. et al. Two TonB Systems in Actinobacillus pleuropneumoniae: Their Roles in Iron Acquisition and Virulence. **Infection and Immunity**, v. 72, n. 2, p. 701–708, fev. 2004.

BEIJERINCK, M. W. Uber ein Spirillum, welches frei en Stick-stoff binden kann? **Zentralbl. Bakteriol.**, v. 63, p. 353–359, 1925.

BELIMOV, A. A.; DIETZ, K. J. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. **Microbiological Research**, v. 155, n. 2, p. 113–121, 1 jan. 2000.

BERNAL, P.; LLAMAS, M. A.; FILLOUX, A. Type VI secretion systems in plant-associated bacteria. **Environmental Microbiology**, v. 20, n. 1, p. 1–15, 1 jan. 2018.

BERNARD, C. S. et al. Nooks and Crannies in Type VI Secretion Regulation. Journal of Bacteriology, v. 192, n. 15, p. 3850–3860, ago. 2010.

BERTELLI, C. et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. **Nucleic Acids Research**, v. 45, n. W1, p. W30–W35, 3 jul. 2017.

BOTTINI, R. et al. Identification of Gibberellins A1, A3, and Iso-A3 in Cultures of Azospirillum lipoferum. **Plant Physiology**, v. 90, n. 1, p. 45, 1 maio 1989.

BROCKHURST, M. A. et al. The Ecology and Evolution of Pangenomes. **Current Biology**, v. 29, n. 20, p. R1094–R1103, 21 out. 2019.

CAI, L. et al. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. **Applied Microbiology and Biotechnology**, v. 83, n. 4, p. 715–725, 1 jun. 2009.

CASSÁN, F. et al. Everything you must know about Azospirillum and its impact on agriculture and beyond. **Biology and Fertility of Soils**, v. 56, n. 4, p. 461–479, 2020.

CASSÁN, F. et al. What Do We Know About the Publications Related with Azospirillum? A Metadata Analysis. **Microbial Ecology**, v. 81, n. 1, p. 278–281, 1 jan. 2021.

CASSAN, F. D. et al. The Azospirillum brasilense type VI secretion system promotes cell aggregation, biocontrol protection against phytopathogens and attachment to the microalgae Chlorella sorokiniana. **Environmental microbiology**, v. 23, n. 10, p. 6257–6274, 1 out. 2021.

CASSÁN, F.; VANDERLEYDEN, J.; SPAEPEN, S. Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR)

Belonging to the Genus Azospirillum. Journal of Plant Growth Regulation 2013 33:2, v. 33, n. 2, p. 440–459, 10 ago. 2013.

CHANG, J. S. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia. **Environmental Pollution**, v. 206, p. 315–323, 1 nov. 2015.

CHANG, J. S.; REN, X.; KIM, K. W. Biogeochemical cyclic activity of bacterial arsB in arsenic-contaminated mines. **Journal of Environmental Sciences**, v. 20, n. 11, p. 1348–1355, 1 jan. 2008.

CHELLAPANDI, P. In silico description of cobalt and nickel assimilation systems in the genomes of methanogens. **Systems and Synthetic Biology**, v. 5, n. 3–4, p. 105–114, 15 dez. 2011.

CHEN, L. et al. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. **Nucleic acids research**, v. 40, n. D1, p. D641–D645, 2012.

CHEN, Y. Y. et al. Cytokinin biosynthesis ISOPENTENYLTRANSFERASE genes are differentially expressed during phyllomorph development in the acaulescent Streptocarpus rexii (Gesneriaceae). **South African Journal of Botany**, v. 109, p. 96–111, 1 mar. 2017.

CHITARA, M. K.; CHAUHAN, S.; SINGH, R. P. Bioremediation of Polluted Soil by Using Plant Growth–Promoting Rhizobacteria. Em: [s.l: s.n.]. p. 203–226.

CHOBY, J. E.; SKAAR, E. P. Heme Synthesis and Acquisition in Bacterial Pathogens. **Journal of molecular biology**, v. 428, n. 17, p. 3408, 8 ago. 2016.

CHOI, O. et al. Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by *Pseudomonas fluorescens* B16. **Plant Physiology**, v. 146, n. 2, p. 657–668, fev. 2008.

COHEN, A. C. et al. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. https://doi.org/10.1139/B09-023, v. 87, n. 5, p. 455–462, maio 2009.

CREUS, C. M. et al. Nitric Oxide is Involved in the Azospirillum brasilense-induced Lateral Root Formation in Tomato. **Planta**, v. 221, n. 2, p. 297–303, 12 maio 2005.

CROSA, J. H.; WALSH, C. T. Genetics and Assembly Line Enzymology of Siderophore Biosynthesis in Bacteria. **Microbiology and Molecular Biology Reviews**, v. 66, n. 2, p. 223–249, jun. 2002.

CRUZ-HERNÁNDEZ, M. A. et al. Azospirillum spp. from Plant Growth-Promoting Bacteria to Their Use in Bioremediation. **Microorganisms 2022, Vol. 10, Page 1057**, v. 10, n. 5, p. 1057, 20 maio 2022.

CUMMINS, E. A. et al. Prokaryote pangenomes are dynamic entities. **Current Opinion in Microbiology**, v. 66, p. 73–78, 1 abr. 2022.

DÁVALOS, A.; GARCÍA-DE LOS SANTOS, A. Five copper homeostasis gene clusters encode the Cu-efflux resistome of the highly copper-tolerant Methylorubrum extorquens AM1. **PeerJ**, v. 11, p. e14925, 20 fev. 2023.

DAY, J. M.; DÖBEREINER, J. Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. **Soil Biology and Biochemistry**, v. 8, n. 1, p. 45–50, 1976.

DE SOUZA, E. M.; DE OLIVEIRA PEDROSA, F. Inorganic Nitrogen Metabolism in Azospirillum spp. Em: **Handbook for Azospirillum: Technical Issues and Protocols**. [s.l.] Springer International Publishing, 2015. p. 139–153.

DE WERRA, P. et al. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. **Applied and Environmental Microbiology**, v. 75, n. 12, p. 4162–4174, jun. 2009.

DE ZAMAROCZY, M. Structural homologues PII and Pz of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen-dependent functions. **Molecular Microbiology**, v. 29, n. 2, p. 449–463, 1 jul. 1998.

DEKHIL, S. BEN et al. Transfer of Conglomeromonas largomobilis subsp. largomobilis to the Genus Azospirillum as Azospirillum largomobile comb. nov., and Elevation of Conglomeromonas largomobilis subsp. parooensis to the New Type Species of Conglomeromonas, Conglomeromonas parooensis sp. nov. **Systematic and Applied Microbiology**, v. 20, n. 1, p. 72–77, 1 jan. 1997.

DIENE, S. M. et al. The Rhizome of the Multidrug-Resistant Enterobacter aerogenes Genome Reveals How New "Killer Bugs" Are Created because of a Sympatric Lifestyle. **Molecular Biology and Evolution**, v. 30, n. 2, p. 369–383, 1 fev. 2013.

DOS SANTOS FERREIRA, N. et al. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. **International Journal of Systematic and Evolutionary Microbiology**, v. 70, n. 12, p. 6203–6212, 2020.

DOS SANTOS FERREIRA, N. et al. Genome-based reclassification of Azospirillum brasilense Az39 as the type strain of Azospirillum argentinense sp. nov. **International Journal of Systematic and Evolutionary Microbiology**, v. 72, n. 8, 1 ago. 2022.

DUAN, Y. Q. et al. Azospirillum tabaci sp. nov., a bacterium isolated from rhizosphere soil of Nicotiana tabacum L. **Archives of Microbiology**, v. 204, n. 1, p. 1–8, 1 jan. 2022.

ECKERT, B. et al. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. **International Journal of Systematic and Evolutionary Microbiology**, v. 51, n. 1, p. 17–26, 2001.

EDGAR, R. C.; BATEMAN, A. Search and clustering orders of magnitude faster than BLAST. **Bioinformatics**, v. 26, n. 19, p. 2460–2461, 1 out. 2010.

EITINGER, T. Transport of nickel and cobalt in Prokaryotes. Em: CULOTTA, V.; SCOTT, R. A. (Eds.). **Metals in Cells**. 1. ed. Chichester: John Wiley & Sons, 2013. v. 1p. 145–154.

ESQUIROL, L. et al. An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. **The Journal of biological chemistry**, v. 293, n. 20, p. 7880–7891, 18 maio 2018.

FERNANDO, D. M.; KUMAR, A. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence. Antibiotics 2013, Vol. 2, Pages 163-181, v. 2, n. 1, p. 163–181, 18 mar. 2013.

FUENMAYOR, S. L. et al. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. **Journal of bacteriology**, v. 180, n. 9, p. 2522–2530, 1998.

FUKAMI, J. et al. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. **AMB Express**, v. 6, n. 1, p. 3, 13 dez. 2016.

FUKAMI, J.; CEREZINI, P.; HUNGRIA, M. Azospirillum: benefits that go far beyond biological nitrogen fixation. **AMB Express 2018 8:1**, v. 8, n. 1, p. 1–12, 4 maio 2018.

GABALLA, A.; HELMANN, J. D. Substrate induction of siderophore transport in Bacillus subtilis mediated by a novel one-component regulator. **Molecular Microbiology**, v. 66, n. 1, p. 164–173, out. 2007.

GAMALERO, E.; GLICK, B. R. Mechanisms Used by Plant Growth-Promoting Bacteria. Em: **Bacteria in Agrobiology: Plant Nutrient Management**. [s.l.] Springer Berlin Heidelberg, 2011. p. 17–46.

GARCÍA, J. E. et al. Signs of a phyllospheric lifestyle in the genome of the stress-tolerant strain Azospirillum brasilense Az19. **Systematic and Applied Microbiology**, v. 43, n. 6, p. 126130, 1 nov. 2020.

GARNEAU-TSODIKOVA, S.; LABBY, K. J. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. **MedChemComm**, v. 7, n. 1, p. 11–27, 2016.

GAUTHIER, J. et al. A brief history of bioinformatics. **Briefings in Bioinformatics**, v. 20, n. 6, p. 1981–1996, 27 nov. 2019.

GIACHINO, A.; WALDRON, K. J. Copper tolerance in bacteria requires the activation of multiple accessory pathways. **Molecular Microbiology**, v. 114, n. 3, p. 377–390, 1 set. 2020.

GLICK, B. R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, v. 2012, p. 1–15, 2012.

GRAYMORE, M.; STAGNITTI, F.; ALLINSON, G. Impacts of atrazine in aquatic ecosystems. **Environment International**, v. 26, n. 7–8, p. 483–495, 1 jun. 2001.

GREGORY, T. R.; DESALLE, R. Comparative Genomics in Prokaryotes. Em: GREGORY, R. T. (Ed.). **The Evolution of the Genome**. 1. ed. [s.l.] Academic Press, 2005. v. 1p. 585–675.

GROVER, M. et al. PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. **Frontiers in Sustainable Food Systems**, v. 4, p. 287, 8 jan. 2021.

GUREVICH, A. et al. QUAST: quality assessment tool for genome assemblies. **Bioinformatics**, v. 29, n. 8, p. 1072–1075, 2013.

HADLEY, W. Package 'tidyverse'. RStudio, , 27 jan. 2017. . Acesso em: 3 fev. 2023

HALL, P. G.; KRIEG, N. R. Application of the Indirect Immunoperoxidase Stain Technique to the Flagella of Azospirillum brasilense. **APPLIED AND ENVIRONMENTAL MICROBIOLOGY**, v. 47, n. 2, p. 433–435, 1984.

HAMDIA, M.; SHADDAD, M. A. K.; DOAA, M. M. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. **Plant Growth Regulation**, v. 44, n. 2, p. 165–174, 2004.

HARTMANN, A. et al. Assessment of the structural and functional diversities of plant microbiota: Achievements and challenges – A review. **Journal of Advanced Research**, v. 19, p. 3–13, set. 2019.

HELSEL, L. O. et al. Reclassification of Roseomonas fauriae Rihs et al. 1998 as a later heterotypic synonym of Azospirillum brasilense Tarrand et al. 1979. **International Journal of Systematic and Evolutionary Microbiology**, v. 56, n. 12, p. 2753–2755, 1 dez. 2006.

HOFER, B.; BACKHAUS, S.; TIMMIS, K. N. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. **Gene**, v. 144, n. 1, p. 9–16, 24 jun. 1994.

HÖRDT, A. et al. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. **Frontiers in Microbiology**, v. 11, p. 468, 7 abr. 2020.

HOWE, K.; BATEMAN, A.; DURBIN, R. QuickTree: building huge Neighbour-Joining trees of protein sequences. **Bioinformatics**, v. 18, n. 11, p. 1546–1547, 1 nov. 2002.

HSIAO, W. et al. IslandPath: aiding detection of genomic islands in prokaryotes. **Bioinformatics**, v. 19, n. 3, p. 418–420, 12 fev. 2003.

HUDSON, C. M.; LAU, B. Y.; WILLIAMS, K. P. Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. **Nucleic Acids Research**, v. 43, n. D1, p. D48–D53, 28 jan. 2015.

HUNGRIA, M.; RIBEIRO, R. A.; NOGUEIRA, M. A. Draft Genome Sequences of Azospirillum brasilense Strains Ab-V5 and Ab-V6, Commercially Used in Inoculants for Grasses and Legumes in Brazil. **Genome Announcements**, v. 6, n. 20, 17 maio 2018.

IDRIS, E. S. E. et al. Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. https://doi.org/10.1094/MPMI-20-6-0619, v. 20, n. 6, p. 619–626, 30 maio 2007. INOUE, J. et al. Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas putida. **Journal of bacteriology**, v. 177, n. 5, p. 1196–1201, 1995.

JIJÓN-MORENO, S. et al. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense. **Antonie van Leeuwenhoek**, v. 107, n. 6, p. 1501–1517, 5 jun. 2015.

KANEKO, T. et al. Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510. **DNA Research**, v. 17, n. 1, p. 37–50, 1 fev. 2010.

KANS, J. Entrez Direct: E-utilities on the Unix Command Line. Em: **Entrez Programming Utilities Help**. [Internet] ed. Bethesda (MD): National Center for Biotechnology Information, 2010.

KATOH, K.; TOH, H. Recent developments in the MAFFT multiple sequence alignment program. **Briefings in Bioinformatics**, v. 9, n. 4, p. 286–298, 1 jul. 2008.

KATSY, E. I. Plasmid Plasticity in the Plant-Associated Bacteria of the Genus Azospirillum. **Bacteria in Agrobiology: Plant Growth Responses**, p. 139–157, 2011.

KENNEDY, I.; CHOUDHURY, A. T. M. A.; KECSKÉS, M. L. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? **Soil Biology and Biochemistry**, v. 36, n. 8, p. 1229–1244, ago. 2004.

KLENOTIC, P. A. et al. Structural and functional diversity of RND transporters. **Chemical reviews**, v. 121, n. 9, p. 5378, 5 maio 2021.

KOBRAS, C. M.; FENTON, A. K.; SHEPPARD, S. K. Next-generation microbiology: from comparative genomics to gene function. **Genome Biology**, v. 22, n. 1, p. 1–16, 2021.

KONSTANTINIDIS, K. T.; TIEDJE, J. M. Genomic insights that advance the species definition for prokaryotes. **Proceedings of the National Academy of Sciences**, v. 102, n. 7, p. 2567–2572, 15 fev. 2005.

KOONIN, E. V.; MAKAROVA, K. S.; WOLF, Y. I. Evolution of Microbial Genomics: Conceptual Shifts over a Quarter Century. **Trends in Microbiology**, v. 29, n. 7, p. 582–592, jul. 2021.

KOPAT, V. V. et al. Evolution of fixNOQP genes encoding cytochrome oxidase with high affinity to oxygen in rhizobia and related bacteria. **Russian Journal of Genetics**, v. 53, n. 7, p. 766–774, 1 jul. 2017.

KOUR, D. et al. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. **Biocatalysis and Agricultural Biotechnology**, v. 23, 1 jan. 2020.

KUSAJIMA, M. et al. Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice. **OUP**, v. 82, n. 9, p. 1522–1526, 2018.

LAMM, R. B.; NEYRA, C. A. Characterization and cyst production of azospirilla isolated from selected grasses growing in New Jersey and New York. https://doi.org/10.1139/m81-202, v. 27, n. 12, p. 1320–1325, 1 dez. 2011.

LANGILLE, M. G. I.; HSIAO, W. W. L.; BRINKMAN, F. S. L. Evaluation of genomic island predictors using a comparative genomics approach. **BMC Bioinformatics**, v. 9, n. 1, p. 1–10, 5 ago. 2008.

LAVRINENKO, K. et al. Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. **International journal of systematic and evolutionary microbiology**, v. 60, n. 12, p. 2832–2837, 2010.

LETUNIC, I.; BORK, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. **Nucleic Acids Research**, v. 49, n. W1, p. W293–W296, 2 jul. 2021.

LI, J. et al. Immobilization of cadmium by mercapto-functionalized palygorskite under stimulated acid rain: Stability performance and micro-ecological response. **Environmental Pollution**, v. 306, p. 119400, ago. 2022.

LI, S. et al. Arenibaculum pallidiluteum gen. Nov., sp. nov., a novel bacterium in the family azospirillaceae, isolated from desert soil, and reclassification of skermanella xinjiangensis to a new genus deserticella as deserticella xinjiangensis comb. nov., and transfer of the genera indioceanicola and oleisolibacter from the family rhodospirillaceae to the family azospirillaceae. **International Journal of Systematic and Evolutionary Microbiology**, v. 71, n. 7, p. 004874, 20 jul. 2021.

LIN, S. Y. et al. Azospirillum formosense sp. nov., a diazotroph from agricultural soil. **International Journal of Systematic and Evolutionary Microbiology**, v. 62, n. 5, p. 1185–1190, 1 maio 2012.

LIN, S.-Y. et al. Azospirillum picis sp. nov., isolated from discarded tar. **International** journal of systematic and evolutionary microbiology, v. 59, n. 4, p. 761–765, 2009.

LIN, S.-Y. et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. **International journal of systematic and evolutionary microbiology**, v. 63, n. Pt_10, p. 3762–3768, 2013.

LIN, S.-Y. et al. Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agricultural soil. **International journal of systematic and evolutionary microbiology**, v. 65, n. Pt_12, p. 4601–4607, 2015.

LIN, S.-Y. et al. Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. **International journal of systematic and evolutionary microbiology**, v. 66, n. 3, p. 1453–1458, 2016.
MALUSÁ, E.; SAS-PASZT, L.; CIESIELSKA, J. Technologies for beneficial microorganisms inocula used as biofertilizers. **The Scientific World Journal**, v. 2012, 2012.

MARONICHE, G. A. et al. Molecular identification of Azospirillum spp.: Limitations of 16S rRNA and qualities of rpoD as genetic markers. **Microbiological Research**, v. 195, p. 1–10, 1 jan. 2017.

MARTIN-DIDONET, C. C. G. et al. Genome structure of the genus Azospirillum. Journal of Bacteriology, v. 182, n. 14, p. 4113–4116, jul. 2000.

MASSENA, V. et al. Fixação Biológica de Nitrogênio – Estado da Arte. **Miolo_Biota.pmd**, p. 151–180, 2006.

MEENA, V. S.; MAURYA, B. R.; VERMA, J. P. Does a rhizospheric microorganism enhance K+ availability in agricultural soils? **Microbiological Research**, v. 169, n. 5–6, p. 337–347, 1 maio 2014.

MEHNAZ, S.; WESELOWSKI, B.; LAZAROVITS, G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. **International journal of systematic and evolutionary microbiology**, v. 57, n. 3, p. 620–624, 2007a.

MEHNAZ, S.; WESELOWSKI, B.; LAZAROVITS, G. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. **International journal of systematic and evolutionary microbiology**, v. 57, n. 12, p. 2805–2809, 2007b.

MIKAEL, L. G. et al. Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae. **Microbiology**, v. 148, n. 9, p. 2869–2882, 1 set. 2002.

MIMA, T. et al. Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND components in Pseudomonas aeruginosa. **Microbiology**, v. 155, n. 11, p. 3509–3517, 1 nov. 2009.

MINH, B. Q. et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. **Molecular Biology and Evolution**, v. 37, n. 5, p. 1530–1534, 1 maio 2020.

MINH, B. Q.; NGUYEN, M. A. T.; VON HAESELER, A. Ultrafast Approximation for Phylogenetic Bootstrap. **Molecular Biology and Evolution**, v. 30, n. 5, p. 1188–1195, 1 maio 2013.

MOENS, S. et al. Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. **Journal of Bacteriology**, v. 177, n. 19, p. 5419–5426, 1995.

MOENS, S.; MICHIELS, K.; VANDERLEYDEN, J. Glycosylation of the flagellin of the polar flagellum of Azospirillum brasilense, a gram-negative nitrogen-fixing bacterium. **Microbiology**, v. 141, n. 10, p. 2651–2657, 1 out. 1995.

MOUSTAFA, A. M.; LAL, A.; PLANET, P. J. Comparative genomics in infectious disease. **Current Opinion in Microbiology**, v. 53, p. 61–70, fev. 2020.

NEIDLE, E. L. et al. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. **Journal of bacteriology**, v. 173, n. 17, p. 5385–5395, 1991.

NGALIMAT, M. S. et al. Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens. **Microorganisms**, v. 9, n. 4, p. 682, 26 mar. 2021.

NIES, D. H. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. **Journal of bacteriology**, v. 174, n. 24, p. 8102–8110, 1992.

O'CALLAGHAN, M.; BALLARD, R. A.; WRIGHT, D. Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. **Soil Use and Management**, v. 38, n. 3, p. 1340–1369, 9 jul. 2022.

OHTA, Y.; KUDO, T.; MAEDA, M. Pseudomonas putida CE2010 can degrade biphenyl by a mosaic pathway encoded by the tod operon and cmtE, which are identical to those of P. putida F1 except for a single base difference in the operator–promoter region of the cmt operon. **Microbiology**, v. 147, n. 1, p. 31–41, 1 jan. 2001.

OKON, Y.; HEYTLER, P. G.; HARDY, R. W. F. N2 Fixation by Azospirillum brasilense and Its Incorporation into Host Setaria italica. **Applied and Environmental Microbiology**, v. 46, n. 3, p. 694–697, set. 1983.

OLANREWAJU, O. S.; GLICK, B. R.; BABALOLA, O. O. Mechanisms of action of plant growth promoting bacteria. **World Journal of Microbiology and Biotechnology**, v. 33, n. 11, p. 0, 2017.

ONDOV, B. D. et al. Mash: fast genome and metagenomedistance estimation using MinHash. v. 17, n. 1, p. 1–14, 20 jun. 2016.

OPPENTOCHT, J. E.; POELARENDS, G. J. **Bacterial Growth on Halogenated Aliphatic Hydrocarbons: Genetics and Biochemistry**. [s.l: s.n.]. Disponível em: ">http://www.rug.nl/research/portal.>.

OROZCO-MOSQUEDA, M. DEL C. et al. Plant Growth-Promoting Bacteria as Bioinoculants: Attributes and Challenges for Sustainable Crop Improvement. **Agronomy 2021, Vol. 11, Page 1167**, v. 11, n. 6, p. 1167, 8 jun. 2021.

OTEINO, N. et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. **Frontiers in Microbiology**, v. 6, n. JUL, p. 745, 22 jul. 2015.

PAGE, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. **Bioinformatics**, v. 31, n. 22, p. 3691–3693, 15 nov. 2015.

PAGE, A. J. et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. **Microbial genomics**, v. 2, n. 4, p. e000056, 1 abr. 2016.

PALMA, M. et al. Pseudomonas aeruginosa SoxR Does Not Conform to the Archetypal Paradigm for SoxR-Dependent Regulation of the Bacterial Oxidative Stress Adaptive Response. **Infection and Immunity**, v. 73, n. 5, p. 2958, maio 2005.

PARALES, R. E. et al. Chapter 1 Diversity of Microbial Toluene Degradation Pathways. Em: [s.l: s.n.]. p. 1–73.

PARK, M. J. et al. Establishment of Genome Based Criteria for Classification of the Family Desulfovibrionaceae and Proposal of Two Novel Genera, Alkalidesulfovibrio gen. nov. and Salidesulfovibrio gen. nov. **Frontiers in Microbiology**, v. 13, p. 738205–738205, 25 maio 2022.

PARKS, D. H. et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. **Genome research**, v. 25, n. 7, p. 1043–1055, 2015.

PARKS, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. **Nucleic** Acids Research, v. 50, n. D1, p. D785–D794, 7 jan. 2022.

PARTE, A. C. et al. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, v. 70, n. 11, 2020.

PATTEN, C. L.; BLAKNEY, A. J. C.; COULSON, T. J. D. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. http://dx.doi.org/10.3109/1040841X.2012.716819, v. 39, n. 4, p. 395–415, nov. 2013.

PATZ, S. et al. PLaBAse: A comprehensive web resource for analyzing the plant growth-promoting potential of plant-associated bacteria. **bioRxiv**, p. 2021.12.13.472471, 15 dez. 2021.

PENG, G. et al. Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. **International Journal of Systematic and Evolutionary Microbiology**, v. 56, n. 6, p. 1263–1271, 1 jun. 2006.

PERRIG, D. et al. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. **Applied Microbiology and Biotechnology**, v. 75, n. 5, p. 1143–1150, 8 jul. 2007.

PING, L.; BOLAND, W. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. **Trends in Plant Science**, v. 9, n. 6, p. 263–266, 1 jun. 2004.

PONTEL, L. B. et al. GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. **Molecular Microbiology**, v. 66, n. 3, p. 814–825, 1 nov. 2007.

PORTER, S. L.; WADHAMS, G. H.; ARMITAGE, J. P. Signal processing in complex chemotaxis pathways. **Nature Reviews Microbiology 2011 9:3**, v. 9, n. 3, p. 153–165, 1 fev. 2011.

PRADIER, L. et al. PlasForest: a homology-based random forest classifier for plasmid detection in genomic datasets. **BMC bioinformatics**, v. 22, n. 1, p. 349, 26 jun. 2021.

PRITCHARD, L. et al. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. **Analytical Methods**, v. 8, n. 1, p. 12–24, 17 dez. 2016.

QIN, Q. L. et al. A proposed genus boundary for the prokaryotes based on genomic insights. **Journal of Bacteriology**, v. 196, n. 12, p. 2210–2215, 2014.

RAETZ, C. R. H.; WHITFIELD, C. Lipopolysaccharide Endotoxins. Annual review of biochemistry, v. 71, p. 635, 2002.

RAJKUMARI, J.; PAIKHOMBA SINGHA, L.; PANDEY, P. Genomic insights of aromatic hydrocarbon degrading Klebsiella pneumoniae AWD5 with plant growth promoting attributes: a paradigm of soil isolate with elements of biodegradation. **3 Biotech**, v. 8, n. 2, p. 118, 7 fev. 2018.

REINHOLD, B. et al. Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). **International Journal of Systematic and Evolutionary Microbiology**, v. 37, n. 1, p. 43–51, 1987.

REIS, V. M.; BALDANI, V. L. D.; BALDANI, J. I. Isolation, identification and biochemical characterization of azospirillum spp. and other nitrogen-fixing bacteria. Em: **Handbook for Azospirillum: Technical Issues and Protocols**. [s.l.] Springer International Publishing, 2015. p. 3–26.

REYNDERS, L.; VLASSAK, K. Conversion of tryptophan to indoleacetic acid by Azospirillum brasilense. **Soil Biology and Biochemistry**, v. 11, n. 5, p. 547–548, 1 jan. 1979.

RICHTER, M.; ROSSELLÓ-MÓRA, R. Shifting the genomic gold standard for the prokaryotic species definition. **Proceedings of the National Academy of Sciences of the United States of America**, v. 106, n. 45, p. 19126–19131, 10 nov. 2009.

RIVERA, D. et al. Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture. **Genome Announcements**, v. 2, n. 4, 28 ago. 2014.

RODRIGUES, G. L. et al. Characterization of cellular, biochemical and genomic features of the diazotrophic plant growth-promoting bacterium Azospirillum sp. UENF-412522, a novel member of the Azospirillum genus. **Microbiological Research**, v. 254, p. 126896, jan. 2022.

RODRIGUEZ, H. et al. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. **Naturwissenschaften**, v. 91, n. 11, p. 552–555, 2004.

ROSSI, F. A. et al. In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots. **Microbiological Research**, v. 190, p. 55–62, 1 set. 2016.

SADASIVAN, L.; NEYRA, C. A. Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. **Journal of Bacteriology**, v. 163, n. 2, p. 716–723, 1985.

SAIJO-HAMANO, Y. et al. In vitro characterization of FlgB, FlgC, FlgF, FlgG, and FliE, flagellar basal body proteins of Salmonella. **Journal of Molecular Biology**, v. 339, n. 2, p. 423–435, 1 maio 2004.

SANT'ANNA, F. H. et al. Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense. **BMC Genomics**, v. 12, n. 1, p. 409, 12 dez. 2011.

SANTOS, M. S.; NOGUEIRA, M. A.; HUNGRIA, M. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. 1 dez. 2019, p. 1–22.

SANTOS, M. S.; NOGUEIRA, M. A.; HUNGRIA, M. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. **Revista Brasileira de Ciência do Solo**, v. 45, 24 fev. 2021.

SEEMANN, T. Prokka: rapid prokaryotic genome annotation. **Bioinformatics**, v. 30, n. 14, p. 2068–2069, 2014.

SHAH, S.; KARKHANIS, V.; DESAI, A. Isolation and characterization of siderophore, with antimicrobial activity, from Azospirillum lipoferum M. **Current Microbiology**, v. 25, n. 6, p. 347–351, dez. 1992.

SHAHWAR, D. et al. Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. **Heliyon**, v. 9, n. 6, p. e16134, jun. 2023.

SHEPPARD, A. E. et al. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blakpc. **Antimicrobial Agents and Chemotherapy**, v. 60, n. 6, p. 3767–3778, 1 jun. 2016.

SHERCHAN, S. P.; BACHOON, D. S. The presence of atrazine and atrazine-degrading bacteria in the residential, cattle farming, forested and golf course regions of Lake Oconee. **Journal of Applied Microbiology**, v. 111, n. 2, p. 293–299, 1 ago. 2011.

SIMÃO, F. A. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. **Bioinformatics**, v. 31, n. 19, p. 3210–3212, 2015.

SNIPEN, L.; LILAND, K. H. micropan: An R-package for microbial pan-genomics. **BMC Bioinformatics**, v. 16, n. 1, p. 1–8, 12 mar. 2015.

SOUMARE, A. et al. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. **Plants**, v. 9, n. 8, p. 1011, 2020.

SPAEPEN, S. et al. Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. **Journal of Bacteriology**, v. 189, n. 21, p. 7626–7633, nov. 2007.

SPAEPEN, S.; VANDERLEYDEN, J. Auxin and plant-microbe interactions. **Cold Spring Harbor perspectives in biology**, v. 3, n. 4, p. a001438, 2011.

SPAEPEN, S.; VANDERLEYDEN, J. Auxin Signaling in Azospirillum brasilense : A Proteome Analysis. Em: **Biological Nitrogen Fixation**. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. p. 937–940.

SPEROTTO, R. A. et al. The electron transfer flavoprotein fixABCX gene products from Azospirillum brasilense show a NifA-dependent promoter regulation. **Current Microbiology**, v. 49, n. 4, p. 267–273, out. 2004.

STEENHOUDT, O.; VANDERLEYDEN, J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. **FEMS microbiology reviews**, v. 24, n. 4, p. 487–506, 2000.

SURIN, B. P.; ROSENBERG, H.; COX, G. B. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. **Journal of bacteriology**, v. 161, n. 1, p. 189–198, 1985.

TARRAND, J. J.; JEFFREY, R. N.; DÖBEREINER, J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. **CAN.** J. MICROBIOL., v. 24, p. 967–980, 25 abr. 1978.

TERRA, L. A. et al. Transcriptome and proteome profiles of the diazotroph Nitrospirillum amazonense strain CBAmC in response to the sugarcane apoplast fluid. **Plant and Soil**, v. 451, n. 1–2, p. 145–168, 1 jun. 2020.

TETTELIN, H. et al. Genome analysis of multiple pathogenic isolates of *Streptococcus agalactiae* : Implications for the microbial "pan-genome". **Proceedings of the National Academy of Sciences**, v. 102, n. 39, p. 13950–13955, 27 set. 2005.

THULER, D. S. et al. Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. **Letters in Applied Microbiology**, v. 37, n. 2, p. 174–178, 1 ago. 2003.

TIKHONOVA, E. N.; GROUZDEV, D. S.; KRAVCHENKO, I. K. Azospirillum palustre sp. Nov., a methylotrophic nitrogen-fixing species isolated from raised bog. **International Journal of Systematic and Evolutionary Microbiology**, v. 69, n. 9, p. 2787–2793, 1 set. 2019.

TORTORA, M. L.; DÍAZ-RICCI, J. C.; PEDRAZA, R. O. Azospirillum brasilense siderophores with antifungal activity against Collectorichum acutatum. Archives of **Microbiology**, v. 193, n. 4, p. 275–286, 14 abr. 2011.

TSAI, K. J.; YOON, K. P.; LYNN, A. R. ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. **Journal of bacteriology**, v. 174, n. 1, p. 116–121, 1992.

VACHERON, J. et al. Alleviation of Abiotic and Biotic Stresses in Plants by Azospirillum. Em: CASSÁN, F.; CREUS, C.; OKON, Y. (Eds.). **Handbook for Azospirillum: Technical Issues and Protocols**. New York: Springer International Publishing, 2015. v. 1p. 333–365.

VALLE, A. et al. Study of the role played by NfsA, NfsB nitroreductase and NemA flavin reductase from Escherichia coli in the conversion of ethyl 2-(2'-nitrophenoxy)acetate to 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), a benzohydroxamic acid with interesting biological properties. **Applied Microbiology and Biotechnology**, v. 94, n. 1, p. 163–171, 17 abr. 2012.

VANDE BROEK, A. et al. Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. **Mol. Plant-Microbe Interact.**, v. 6, p. 592–600, 1993.

VON BULOW, J. F. W.; DOBEREINER, J. Potential for Nitrogen Fixation in Maize Genotypes in Brazil (grass-bacteria associations/Spirillum lipoferum/acetylene reduction). v. 72, n. 6, p. 2389–2393, 1975.

VON HORSTEN, S. et al. Inactive pseudoenzyme subunits in heterotetrameric BbsCD, a novel short-chain alcohol dehydrogenase involved in anaerobic toluene degradation. **The FEBS journal**, v. 289, n. 4, p. 1023–1042, 1 fev. 2022.

WAACK, S. et al. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. **BMC Bioinformatics**, v. 7, n. 1, p. 1–12, 16 mar. 2006.

WANG, Y. et al. Insights into the molecular mechanism of dehalogenation catalyzed by D-2-haloacid dehalogenase from crystal structures. **Scientific Reports 2018 8:1**, v. 8, n. 1, p. 1–9, 23 jan. 2018.

WASH, P. et al. Prevalence of Antimicrobial Resistance and Respective Genes among Bacillus spp., a Versatile Bio-Fungicide. **International Journal of Environmental Research and Public Health**, v. 19, n. 22, p. 14997, 1 nov. 2022.

WEIMER, A. et al. Industrial biotechnology of Pseudomonas putida: advances and prospects. **Applied Microbiology and Biotechnology**, v. 104, n. 18, p. 7745–7766, 13 set. 2020.

WILLIAMS, C. L. et al. Characterization of Acinetobacter baumannii Copper Resistance Reveals a Role in Virulence. **Frontiers in Microbiology**, v. 11, 6 fev. 2020.

WISNIEWSKI-DYÉ, F. et al. Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments. **PLOS Genetics**, v. 7, n. 12, p. e1002430, dez. 2011.

WISNIEWSKI-DYÉ, F. et al. Genome Sequence of Azospirillum brasilense CBG497 and Comparative Analyses of Azospirillum Core and Accessory Genomes provide Insight into Niche Adaptation. **Genes 2012, Vol. 3, Pages 576-602**, v. 3, n. 4, p. 576–602, 28 set. 2012.

WU, D. et al. Azospirillum oleiclasticum sp. nov, a nitrogen-fixing and heavy oil degrading bacterium isolated from an oil production mixture of Yumen Oilfield. **Systematic and applied microbiology**, v. 44, n. 1, p. 126171, 2021.

YANG, T. H. et al. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. **Journal of Biotechnology**, v. 172, p. 59–66, fev. 2014.

YANG, Y. et al. Azospirillum griseum sp. nov., isolated from lakewater. **International Journal of Systematic and Evolutionary Microbiology**, v. 69, n. 12, p. 3676–3681, 2019.

YOUNG, C. C. et al. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. **International journal of systematic and evolutionary microbiology**, v. 58, n. 4, p. 959–963, 2008.

ZAHEER, M. S. et al. Cytokinin Production by Azospirillum brasilense Contributes to Increase in Growth, Yield, Antioxidant, and Physiological Systems of Wheat (Triticum aestivum L.). **Frontiers in Microbiology**, v. 13, p. 1613, 19 maio 2022.

ZHAN, P. C. et al. Azospirillum Endophyticum sp. nov., an Endophyte of Paris Polyphylla Smith var. Yunnanensis. **Current Microbiology**, v. 80, n. 1, p. 1–8, 1 jan. 2023.

ZHANG, P. et al. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. **Molecules 2019, Vol. 24, Page 1411**, v. 24, n. 7, p. 1411, 10 abr. 2019.

ZHAO, Z. et al. Azospirillum thermophilum sp. nov., isolated from a hot spring. **International Journal of Systematic and Evolutionary Microbiology**, v. 70, n. 1, p. 550–554, 2020.

ZHOU, S. et al. Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. **International journal of systematic and evolutionary microbiology**, v. 63, n. Pt_7, p. 2618–2624, 2013.

ZHOU, W. et al. Phenol degradation by Sulfobacillus acidophilus TPY via the meta - pathway. **Microbiological Research**, v. 190, p. 37–45, set. 2016.

ZHU, H.-Z. et al. Bacteria and metabolic potential in karst caves revealed by intensive bacterial cultivation and genome assembly. **Applied and environmental microbiology**, v. 87, n. 6, p. e02440-20, 2021.

ZIMMER, W.; APARICIO, C.; ELMERICH, C. Relationship between tryptophan biosynthesis and indole-3-acetic acid production in Azospirillum: identification and sequencing of a trpGDC cluster. **MGG Molecular & General Genetics**, v. 229, n. 1, p. 41–51, set. 1991.

N.º de acesso	Gênero Genbank	Espécie Genbank	Cepa Genbank	Gênero GTDB	Espécie GTDB
GCA_001939945.1	Aerophototrophica	crusticola	MIMtkB3	Aerophototrophica	Aerophototrophica crusticola
GCA_001296005.1	Alpha	proteobacterium	AAP38	Niveispirillum	Niveisprillum sp. 001296005
GCA_017355985.1	Arenibaculum	pallidiluteum	SYSU D00532	Desertibacter	Desertibacter sp. 017355985
GCA_001917175.1	Azospirillum	sp.	51_20	51-20	51-20 sp. 001917175
GCA_017876095.1	Azospirillum	agricola	CC-HIH038	Azospirillum	Azospirillum agricola
GCA_900177475.1	Azospirillum	lipoferum	R1C	Azospirillum	Azospirillum agricola
GCA_007827765.1	Azospirillum	baldaniorum	BR 12001	Azospirillum	Azospirillum baldaniorum
GCA_016652835.1	Azospirillum	brasilense	D7	Azospirillum	Azospirillum baldaniorum
GCA_002895265.1	Azospirillum	argentinense	REC3	Azospirillum	Azospirillum baldaniorum
GCA_013341015.1	Azospirillum	baldaniorum	Vi22	Azospirillum	Azospirillum baldaniorum
GCA_005222185.1	Azospirillum	argentinense	MTCC4036	Azospirillum	Azospirillum baldaniorum
GCA_008369925.1	Azospirillum	argentinense	Az19	Azospirillum	Azospirillum baldaniorum
GCA_003119195.2	Azospirillum	baldaniorum	Sp245	Azospirillum	Azospirillum baldaniorum
GCA_000237365.1	Azospirillum	baldaniorum	Sp245	Azospirillum	Azospirillum baldaniorum
GCA_007827915.1	Azospirillum	brasilense	BR 11005	Azospirillum	Azospirillum baldaniorum
GCA_016622125.1	Azospirillum	argentinense	BR 11975	Azospirillum	Azospirillum baldaniorum
GCA_007828115.1	Azospirillum	brasilense	BR 11002	Azospirillum	Azospirillum brasilense
GCA_008274965.1	Azospirillum	brasilense	Cd	Azospirillum	Azospirillum brasilense
GCA_007827425.1	Azospirillum	brasilense	Sp 7	Azospirillum	Azospirillum brasilense
GCA_001315015.1	Azospirillum	brasilense	Sp7	Azospirillum	Azospirillum brasilense
GCA_003116055.1	Azospirillum	sp.	Sp	Azospirillum	Azospirillum brasilense
GCA_002940755.1	Azospirillum	brasilense	Ab-V6	Azospirillum	Azospirillum brasilense
GCA_000404045.1	Azospirillum	brasilense	FP2	Azospirillum	Azospirillum brasilense
GCA_008274945.1	Azospirillum	brasilense	Sp 7	Azospirillum	Azospirillum brasilense
GCA_013340925.1	Azospirillum	formosense	CC-NFb-7	Azospirillum	Azospirillum brasilense
GCA_002027385.1	Azospirillum	brasilense	Sp7	Azospirillum	Azospirillum brasilense
GCA_002027445.1	Azospirillum	brasilense	V6	Azospirillum	Azospirillum brasilense
GCA_005222145.1	Azospirillum	brasilense	MTCC4038	Azospirillum	Azospirillum brasilense
GCA_013340975.1	Azospirillum	brasilense	BR 11017	Azospirillum	Azospirillum brasilense
GCA_003584185.1	Azospirillum	brasilense	SR80	Azospirillum	Azospirillum brasilense
GCA_002940725.1	Azospirillum	brasilense	Ab-V5	Azospirillum	Azospirillum brasilense
GCA_013340915.1	Azospirillum	brasilense	BR 11649	Azospirillum	Azospirillum brasilense
GCA_014596085.1	Azospirillum	tabaci	W712	Azospirillum	Azospirillum brasilense_A
GCA_002245955.1	Azospirillum	brasilense	2A1	Azospirillum	Azospirillum brasilense_A
GCA_005222165.1	Azospirillum	argentinense	MTCC4035	Azospirillum	Azospirillum brasilense_B
GCA_003349955.1	Azospirillum	brasilense	HAMBI_3172	Azospirillum	Azospirillum brasilense_B
GCA_016622105.1	Azospirillum	brasilense	BR 11138	Azospirillum	Azospirillum brasilense_C
GCA_007827815.1	Azospirillum	brasilense	BR 11650	Azospirillum	Azospirillum brasilense_C
GCA_007828645.1	Azospirillum	brasilense	BR 11796	Azospirillum	Azospirillum brasilense_C
GCA_008365405.1	Azospirillum	brasilense	ATCC 49958	Azospirillum	Azospirillum brasilense_D
GCA_016622085.1	Azospirillum	brasilense	BR 11669	Azospirillum	Azospirillum brasilense_E
GCA_016632405.1	Azospirillum	sp.	YIM DDC1	Azospirillum	Azospirillum brasilense_E
GCA_007827795.1	Azospirillum	brasilense	BR 11026	Azospirillum	Azospirillum brasilense_E
GCA_003989665.1	Azospirillum	doebereinerae	GSF71	Azospirillum	Azospirillum doebereinerae
GCA_003966125.1	Azospirillum	griseum	L-25-5 w-1	Azospirillum	Azospirillum griseum
GCA_000429625.1	Azospirillum	halopraeferens	DSM 3675	Azospirillum	Azospirillum halopraeferens
GCA_001639105.2	Azospirillum	humicireducens	SgZ-5	Azospirillum	Azospirillum humicireducens

APÊNDICE A – Metadados de Azospirillaceae comparativos obtidos do GenBank e GTDB.

N.º de acesso	Gênero Genbank	Espécie Genbank	Cepa Genbank	Gênero GTDB	Espécie GTDB
GCA_008364955.1	Azospirillum	lipoferum	59b	Azospirillum	Azospirillum lipoferum
GCA_000010725.1	Azospirillum	sp.	B510	Azospirillum	Azospirillum lipoferum_B
GCA_000283655.1	Azospirillum	lipoferum	4B	Azospirillum	Azospirillum lipoferum_C
GCA_013340935.1	Azospirillum	melinis	TMCY 0552	Azospirillum	Azospirillum melinis
GCA_017876055.1	Azospirillum	melinis	TMCY 0552	Azospirillum	Azospirillum melinis
GCA_003115895.1	Azospirillum	sp.	TSA6c	Azospirillum	Azospirillum melinis
GCA_002573965.1	Azospirillum	palustre	B2	Azospirillum	Azospirillum melinis
GCA_013423495.1	Azospirillum	oleiclasticum	ROY-1-1-2	Azospirillum	Azospirillum oleiclasticum
GCA_013423485.1	Azospirillum	oleiclasticum	RWY-5-1-1	Azospirillum	Azospirillum oleiclasticum
GCA_008364795.1	Azospirillum	oryzae	COC8	Azospirillum	Azospirillum oryzae
GCA_013347285.1	Azospirillum	oryzae	KACC 14407	Azospirillum	Azospirillum oryzae
GCA_008365135.1	Azospirillum	sp.	Sh1	Azospirillum	Azospirillum oryzae
GCA_900177515.1	Azospirillum	oryzae	A2P	Azospirillum	Azospirillum oryzae_A
GCA_017876115.1	Azospirillum	picis	IMMIB TAR-3	Azospirillum	Azospirillum picis
GCA_003233655.1	Azospirillum	ramasamyi	M2T2B2	Azospirillum	Azospirillum ramasamyi
GCA_017876155.1	Azospirillum	rugosum	IMMIB AFH-6	Azospirillum	Azospirillum rugosum
GCA_017876165.1	Azospirillum	soli	CC-LY788	Azospirillum	Azospirillum soli
GCA_003115975.1	Azospirillum	sp.	TSH100	Azospirillum	Azospirillum sp. 003115975
GCA_004923295.1	Azospirillum	sp.	TSH100	Azospirillum	Azospirillum sp. 003115975
GCA_003116015.1	Azospirillum	sp.	TSO22-1	Azospirillum	Azospirillum sp. 003116015
GCA_003116035.1	Azospirillum	sp.	TSH64	Azospirillum	Azospirillum sp. 003116035
GCA 004923315.1	Azospirillum	sp.	TSA2S	Azospirillum	Azospirillum sp. 003116065
GCA 003115935.1	Azospirillum	sp.	TSH20	Azospirillum	Azospirillum sp. 003116065
GCA 003115945.1	Azospirillum	SD.	TSH7	Azospirillum	Azospirillum sp. 003116065
GCA_003116065.1	Azospirillum	SD.	TSO5	Azospirillum	Azospirillum sp. 003116065
GCA_003116095.1	Azospirillum	SD.	TSO35-2	Azospirillum	Azospirillum sp. 003116095
GCA_005222205.1	Azospirillum	brasilense	MTCC4039	Azospirillum	Azospirillum sp. 003119115
GCA 003115995.1	Azospirillum	SD.	TSH58	Azospirillum	Azospirillum sp. 003119115
GCA 003119115.1	Azospirillum	SD.	TSH58	Azospirillum	Azospirillum sp. 003119115
GCA_003590795.1	Azospirillum	cavernae	K2W22B-5	Azospirillum	Azospirillum sp. 003590795
GCA_015390205.1	Azospirillum	SD.	INR13	Azospirillum	Azospirillum sp. 008364825
GCA_008364825.1	Azospirillum	sp	B21	Azospirillum	Azospirillum sp. 008364825
GCA_014192915.1	Azospirillum	sp.	OGB3	Azospirillum	Azospirillum sp. 014192915
GCA_016595245_1	Azospirillum	sp.	YIM B02556	Azospirillum	Azospirillum sp. 016595245
GCA_017356015_1	Azospirillum	sp.	SYSU D00513	Azospirillum	Azospirillum sp. 017356015
GCA_003130795.1	Azospirillum	sp.	CFH 70021	Azospirillum	Azospirillum thermophilum
GCA_001305595.1	Azospirillum	thiophilum	BV-S	Azospirillum	Azospirillum thiophilum
GCA_000960825.1	Azospirillum	thiophilum	DSM 21654	Azospirillum	Azospirillum thiophilum
GCA_013340985.1	Azospirillum	brasilense	BR 11019	NA	NA
GCA_021636945_1	Azospirillum	sn	B36	NA	NA
GCA_020249095.1	Azospirillum	sp.	M113S1SP1449OC	NA	NA
GCA_020249045.1	Azospirillum	sp.	M122S2SP1449QC	NA	NA
GCA_022023855.1	Azospirillum	sp.	2020WEIHUA K	NA	NA
GCA_023806445_1	Azospirillum	sp	2020 WEITOR_K	NA	NA
GCA_024178045.1	Azospirillum	sp.	н нэт	NA	NA
GCA 024170045.1	Azospirillum	linoferum	Sp59b	NA	NA
GCA 000233505 1	Azospirillum	spojerum	B506	NA	NΔ
GCA 0200051051	Azospirillum	sp.	B300	NA	NA
GCA_0220105195.1	Azospirillum	doebereineree	RE-21-28	NA	NA
GCA 010780895 1	Azospirillum	formoscence	Nfb7	NA	NA
GCA 0108051651	Azospirillum	joi mosense	412522	NA	NA
GCA 021768805 1	Azospirillum	sp.	-1 <i>2322</i>	NA	NA
GCA_021/06005.1	ncospiriuum	°P.	50	114	1111

N.º de acesso	Gênero Genbank	Espécie Genbank	Cepa Genbank	Gênero GTDB	Espécie GTDB
GCA_022764005.1	Azospirillum	sp.	SUG249	NA	NA
GCA_000632475.2	Azospirillum	argentinense	Az39	NA	NA
GCA_000333275.1	Azospirillum	sp.	B4	Nitrospirillum	Nitrospirillum sp. 000333275
GCA_900188305.1	Azospirillum	sp.	RU37A	Niveispirillum	Niveisprillum sp. 900188385
GCA_900188385.1	Azospirillum	sp.	RU38E	Niveispirillum	Niveisprillum sp. 900188385
GCA_003241645.1	Azospirillum	brasilense	S2_006_000_R2_60	QFOX01	QFOX01 sp. 003241645
GCA_016124535.1	Azospirillum	sp.	RI_112	RI-112	RI-112 sp. 016124535
GCA_003241095.1	Azospirillum	brasilense	S2_012_000_R2_79	Roseomonas	Roseomonas gilardii
GCA_003243305.1	Azospirillum	brasilense	S2_003_000_R2_10	Roseomonas	Roseomonas gilardii
GCA_000436375.1	Azospirillum	sp.	CAG:239	Scatacola_A	Scatacola_A faecigallinarum
GCA_018381375.1	Azospirillum	sp.	L2_031	Scatacola_A	Scatacola_A faecigallinarum
GCA_018381215.1	Azospirillum	sp.	L2_038	Scatacola_A	Scatacola_A faecigallinarum
GCA_001917125.1	Azospirillum	sp.	47_25	Scatocola	Scatocola faecipullorum
GCA_000436195.1	Azospirillum	sp.	CAG:260	Scatocola	Scatocola faecipullorum
GCA_003150955.1	Azospirillum	sp.	CIM	Scatocola	Scatocola faecipullorum
GCA_018382185.1	Azospirillum	sp.	L2_026	Scatocola	Scatocola faecipullorum
GCA_003568845.1	Indioceanicola	profundi	SCSIO 08040	Indioceanicola	Indioceanicola profundi
GCA_000225995.2	Nitrospirillum	amazonense	Y2	NA	NA
GCA_000730165.2	Nitrospirillum	amazonense	CBAmc	NA	NA
GCA_007827975.1	Nitrospirillum	amazonense	BR 11140	Nitrospirillum	Nitrospirillum amazonense
GCA_007827935.1	Nitrospirillum	amazonense	BR 11145	Nitrospirillum	Nitrospirillum amazonense
GCA_007828025.1	Nitrospirillum	amazonense	BR 11865	Nitrospirillum	Nitrospirillum amazonense
GCA_007828035.1	Nitrospirillum	amazonense	BR 12005	Nitrospirillum	Nitrospirillum amazonense_A
GCA_007827955.1	Nitrospirillum	amazonense	BR 11622	Nitrospirillum	Nitrospirillum amazonense_B
GCA_007828045.1	Nitrospirillum	amazonense	BR 11880	Nitrospirillum	Nitrospirillum amazonense_C
GCA 014205765.1	Nitrospirillum	iridis	DSM 22198	Nitrospirillum	Nitrospirillum iridis
GCA_016463045.1	Niveispirillum	sp.	SupBloom_Metag_059	NA	NA
GCA_014640215.1	Niveispirillum	cyanobacteriorum	CGMCC 1.12958	Niveispirillum	Niveispirillum cyanobacteriorum
GCA 002868735.1	Niveispirillum	cyanobacteriorum	TH16	Niveispirillum	Niveispirillum cyanobacteriorum
GCA_000429645.1	Niveispirillum	irakense	DSM 11586	Niveispirillum	Niveispirillum irakense
GCA_002251795.1	Niveispirillum	lacus	1-14	Niveispirillum	Niveispirillum lacus
GCA 009495745.1	Niveispirillum	sp.	SYP-B3756	Niveispirillum	'Niveispirillum sp. 009495745
GCA_017996735.1	Niveispirillum	sp.	Gw_Bodden_bin_248	Niveispirillum	Niveisprillum sp. 017996735
GCA 003336875.1	Oleisolibacter	albus	NAU-10	Oleisolibacter	Oleisolibacter albus
GCA 012913305.1	Rhodospirillaceae	bacterium	В3	Aerophototrophica	Aerophototrophica crusticola
GCA 003165295.1	Rhodospirillales	bacterium	bog 933	BOG-933	BOG-933 sp. 003165295
GCA 000016185.1	Rhodospirillum	centenum	SW	Rhodospirillum A	Rhodospirillum A centenum
GCA 008365375.1	Roseomonas	genomospecies	6	Azospirillum	Azospirillum sp. 008365375
GCA 016806835.2	Skermanella	rosea	KEMB 2255-458	NA	NA
GCA_016765655.2	Skermanella	mucosa	KEMB 2255-438	NA	NA
GCA 000936425.1	Skermanella	aerolata	5416T-32	Skermanella	Skermanella aerolata
GCA 007991775.1	Skermanella	aerolata	NBRC 106429	Skermanella	Skermanella aerolata
GCA 008843145.1	Skermanella	pratensis	W17	Skermanella	Skermanella pratensis
GCA_016653635.2	Skermanella	SD.	TT6	Skermanella	Skermanella sp. 016653635
GCA 000576635 1	Skermanella	stibiiresistens	SB22	Skermanella	Skermanella stihiiresistens
GCA 900539545 1	uncultured Azospirillum	SD.	UMGS148	51-20	51-20 sp. 001917175
GCA 905193295 1	uncultured Azospirillum	SD.	ERR1190581	51-20	51-20 sp. 001917175
GCA 900539605 1	uncultured Azospirillum	SD.	UMGS149	51-20	51-20 sp. 900539605
GCA 905211255 1	uncultured Azospirillum	-r·	FRR414348	51-20	51-20 sp. 900542055
GCA 900542055 1	uncultured Azospirillum	sp.	UMGS418	51-20	51-20 sp. 900542055
GCA 900538765 1	uncultured Azospirillum	sp.	UMGS63	HGM16780	HGM16780 sp. 000538765
GCA_900338703.1	uncultured Azossivillum	sр.	MOVG HOUT 02616	NA	NA
GCA_702366933.1	uncultured Agospirillum	ар. СР	MG1G-HGUT-02010	NA	NA
GCA_902382383.1	uncultured Azospirillum	sp.	SDD14526262	NA	NA
GCA_740460365.1	uncultured Azospirillum	ар. СР	MCVC HOUT 01074	NA	NA

					Continuação
N.º de acesso	Gênero Genbank	Espécie Genbank	Cepa Genbank	Gênero GTDB	Espécie GTDB
GCA_946184595.1	uncultured Azospirillum	sp.	SRR11784282	NA	NA
GCA_946623145.1	uncultured Azospirillum	sp.	SRR873605	NA	NA
GCA_946618725.1	uncultured Azospirillum	sp.	SRR873606	NA	NA
GCA_946628395.1	uncultured Azospirillum	sp.	SRR873608	NA	NA
GCA_945939085.1	uncultured Azospirillum	sp.	SRR11489786	NA	NA
GCA_945938585.1	uncultured Azospirillum	sp.	SRR11489787	NA	NA
GCA_946055605.1	uncultured Azospirillum	sp.	SRR11551368	NA	NA
GCA_945834575.1	uncultured Azospirillum	sp.	SRR5665903	NA	NA
GCA_945836845.1	uncultured Azospirillum	sp.	SRR5666653	NA	NA
GCA_903876595.1	uncultured Azospirillum	sp.	MJ-time_bin-8109	NA	NA
GCA_905214115.1	uncultured Azospirillum	sp.	SRR7721874	Scatacola_A	Scatacola_A faecigallinarum
GCA_900538915.1	uncultured Azospirillum	sp.	UMGS65	Scatacola_A	Scatacola_A faecigallinarum
GCA_905194615.1	uncultured Azospirillum	sp.	ERR1190770	Scatocola	Scatocola faecipullorum
GCA_900540245.1	uncultured Azospirillum	sp.	UMGS223	Scatocola	Scatocola faecipullorum
GCA_903946835.1	uncultured Rhodospirillales	bacterium	B-4_bin-639	BOG-933	BOG-933 sp. 903920145
GCA_903903135.1	uncultured Rhodospirillales	bacterium	B4coas_bin-1199	BOG-933	BOG-933 sp. 903920145
GCA_903883715.1	uncultured Rhodospirillales	bacterium	C5_bin-1525	BOG-933	BOG-933 sp. 903920145
GCA_903933655.1	uncultured Rhodospirillales	bacterium	C-5_bin-467	BOG-933	BOG-933 sp. 903920145
GCA_903920145.1	uncultured Rhodospirillales	bacterium	C5coas_bin-2163	BOG-933	BOG-933 sp. 903920145
GCA_903927615.1	uncultured Rhodospirillales	bacterium	AM-2014_bin-1497	BOG-933	BOG-933 sp. 903927615
GCA_903928145.1	uncultured Rhodospirillales	bacterium	VK_bin-3208	CAIZDL01	CAIZDL01 sp. 903856295
GCA_903856295.1	uncultured Rhodospirillales	bacterium	VK3_bin-0780	CAIZDL01	CAIZDL01 sp. 903856295
GCA_903875535.1	uncultured Rhodospirillales	bacterium	Umea_bin-08290	CAIZDL01	CAIZDL01 sp. 903931735
GCA_903931735.1	uncultured Rhodospirillales	bacterium	Umea3_bin-0647	CAIZDL01	CAIZDL01 sp. 903931735
GCA_903907775.1	uncultured Rhodospirillales	bacterium	Umea3p3_bin-1246	CAIZDL01	CAIZDL01 sp. 903931735
GCA_903908255.1	uncultured Rhodospirillales	bacterium	Umea3p4_bin-0332	CAIZDL01	CAIZDL01 sp. 903931735

APÊNDICE B – Genomas obtidos pela avaliação da filogenia do GTDB. A classificaç	ção
taxonômica do GTDB foi comparada com a disponível no GenBank.	

N.º de acesso	Gênero GTDB	Espécie GTDB	Gênero Genhank	Esnécie Genhank	Cena Genhank
GCA 012913305.1	Aerophototrophica	Aerophototrophica crusticola	Rhodospirillaceae	bacterium	B3
GCA_001939945.1	Aerophototrophica	Aerophototrophica crusticola	Aerophototrophica	crusticola	MIMtkB3
GCA_008365375.1	Azospirillum	Azospirillum sp. 008365375	Roseomonas	genomospecies	6
GCA_903946835.1	BOG-933	BOG-933 sp. 903920145	Rhodospirillales	bacterium	B-4_bin-639
GCA_903903135.1	BOG-933	BOG-933 sp. 903920145	Rhodospirillales	bacterium	B4coas_bin-1199
GCA_003165295.1	BOG-933	BOG-933 sp. 003165295	Rhodospirillales	bacterium	bog_933
GCA_903883715.1	BOG-933	BOG-933 sp. 903920145	Rhodospirillales	bacterium	C5_bin-1525
GCA_903933655.1	BOG-933	BOG-933 sp. 903920145	Rhodospirillales	bacterium	C-5_bin-467
GCA_903920145.1	BOG-933	BOG-933 sp. 903920145	Rhodospirillales	bacterium	C5coas_bin-2163
GCA_903927615.1	BOG-933	BOG-933 sp. 903927615	Rhodospirillales	bacterium	AM-2014_bin-1497
GCA_903928145.1	CAIZDL01	CAIZDL01 sp. 903856295	Rhodospirillales	bacterium	VK_bin-3208
GCA_903856295.1	CAIZDL01	CAIZDL01 sp. 903856295	Rhodospirillales	bacterium	VK3_bin-0780
GCA_903875535.1	CAIZDL01	CAIZDL01 sp. 903931735	Rhodospirillales	bacterium	Umea_bin-08290
GCA_903931735.1	CAIZDL01	CAIZDL01 sp. 903931735	Rhodospirillales	bacterium	Umea3_bin-0647
GCA_903907775.1	CAIZDL01	CAIZDL01 sp. 903931735	Rhodospirillales	bacterium	Umea3p3_bin-1246
GCA_903908255.1	CAIZDL01	CAIZDL01 sp. 903931735	Rhodospirillales	bacterium	Umea3p4_bin-0332
GCA_001296005.1	Niveispirillum	Niveisprillum sp. 001296005	Alpha	proteobacterium	AAP38
GCA_000016185.1	Rhodospirillum_A	Rhodospirillum_A centenum	Rhodospirillum	centenum	SW

1 GCA_003119195.2 A. baldantorum Sp245 R 177633c GCA_000237365.1 A. baldantorum Sp245 T 1766025 GCA_007827915.1 A. brasilense BR 11005 402362 2 GCA_005222145.1 A. brasilense MTCC4038 R 175752 GCA_008274965.1 A. brasilense Sp 7 175452 GCA_008274945.1 A. brasilense Sp 7 1713974 GCA_007827425.1 A. brasilense BR11002 49402 GCA_007827425.1 A. brasilense BR11002 49402 GCA_007827455.1 A. brasilense BR11002 49402 GCA_002940725.1 A. brasilense BR11002 49402 GCA_00240755.1 A. brasilense JLH21 218812 GCA_002027385.1 A. brasilense V6 90896 GCA_0021605.1 Acopririllum sp. Sp 7 101258 GCA_0021605.1 Acopririllum sp. Sp 8 85049 GCA_0021605.1 Acopririllum sp. TSH20 R 61811 GCA_003116055.1	Agrupamento MASH	Nº. de acesso	Espécie	Сера	N50
GCA_000237365.1 A. baldanioram Sp245 T 1766028 GCA_007827915.1 A. brasilense BR 11005 402362 2 GCA_005222145.1 A. brasilense MTCC4038 R 1757525 GCA_001315015.1 A. brasilense Sp 7 1754525 GCA_008274965.1 A. brasilense Sp 7 1713974 GCA_007827425.1 A. brasilense Sp 7 T 585936 GCA_00782115.1 A. brasilense BR 11002 49402 GCA_00782115.1 A. brasilense BR 11002 49402 GCA_00782115.1 A. brasilense BR 11002 49402 GCA_002940725.1 A. brasilense BV 6 236259 GCA_002178045.1 A. brasilense JLH21 21812 GCA_00217855.1 A. brasilense Sp 7 101258 GCA_00217855.1 A. brasilense V6 90896 GCA_003115915.1 Azospirillum sp. Sp 8 S6049 GCA_003115915.1 Azospirillum sp. TSH10 R 1163202 GCA_003115915.1 Azospi	1	GCA_003119195.2	A. baldaniorum	Sp245 R	1776336
GCA_007827915.1 A. brasilense BR 11005 402362 2 GCA_005222145.1 A. brasilense MTCC4038 R 1757525 GCA_001315015.1 A. brasilense Sp 7 1754525 GCA_008274965.1 A. brasilense Sp 7 1713974 GCA_007827425.1 A. brasilense Sp 7 58936 GCA_007828115.1 A. brasilense Sp 7 58936 GCA_002940725.1 A. brasilense AbV5 310565 GCA_02940725.1 A. brasilense AbV6 236259 GCA_02940725.1 A. brasilense JLH21 21812 GCA_002027385.1 A. brasilense Sp 7 101258 GCA_002027385.1 A. brasilense V6 90896 GCA_003116055.1 Acospirillum sp. Sp 7 101258 GCA_003115952.1 Acospirillum sp. TSH0 116310 GCA_003115955.1 Acospirillum sp. TSH0 116310 GCA_003115955.1 Acospirillum sp. TSH100 110981 GCA_003115975.1 Acospirillum sp.		GCA_000237365.1	A. baldaniorum	Sp245 T	1766028
2 GCA_005222145.1 A. brasilense MTCC4038 R 1757525 GCA_001315015.1 A. brasilense Sp 7 1754525 GCA_008274965.1 A. brasilense Cd 1735377 GCA_008274945.1 A. brasilense Sp 7 1713974 GCA_007827425.1 A. brasilense Sp 7 T 585936 GCA_002940725.1 A. brasilense BR11002 449402 GCA_002940755.1 A. brasilense AbV5 310565 GCA_002027455.1 A. brasilense JLH21 218812 GCA_002027455.1 A. brasilense JLH21 218812 GCA_002027385.1 A. brasilense V6 90896 GCA_002027445.1 A. brasilense V6 90896 GCA_0020116055.1 Azospirillum sp. Sp 85049 GCA_003116955.1 Azospirillum sp. TSH7 57929 4 GCA_004923295.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH58 R 1910929 GCA_003119151.1		GCA_007827915.1	A. brasilense	BR 11005	402362
GCA_001315015.1 A. brasilense Sp 7 1754523 GCA_008274965.1 A. brasilense Cd 1735377 GCA_008274945.1 A. brasilense Sp 7 1713974 GCA_007827425.1 A. brasilense Sp 7 585936 GCA_002940725.1 A. brasilense BR11002 449402 GCA_002940725.1 A. brasilense AbV5 310565 GCA_002940755.1 A. brasilense JLH21 218812 GCA_002027385.1 A. brasilense JLH21 218812 GCA_002027385.1 A. brasilense N6 90896 GCA_002027445.1 A. brasilense V6 90896 GCA_002027445.1 A. brasilense Sp 7 101258 GCA_003116055.1 Azospirillum sp. Sp Sp 85049 GCA_003115935.1 Azospirillum sp. TSH20 R 61811 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003119151.1 Azospirillum s	2	GCA_005222145.1	A. brasilense	MTCC4038 R	1757525
GCA_008274965.1 A. brasilense Cd 173377 GCA_008274945.1 A. brasilense Sp 7 1713974 GCA_007827425.1 A. brasilense Sp 7 T 585936 GCA_007828115.1 A. brasilense BR11002 449402 GCA_002940725.1 A. brasilense BR11002 449402 GCA_002940725.1 A. brasilense AbV5 310565 GCA_002940725.1 A. brasilense AbV6 236259 GCA_002027385.1 A. brasilense JLH21 218812 GCA_002027445.1 A. brasilense Sp 7 101258 GCA_003116055.1 Azospirillum sp. Sp 8 85049 GCA_003116055.1 Azospirillum sp. SH2 9432 GCA_003116055.1 Azospirillum sp. TSH20 R 61811 GCA_003115945.1 Azospirillum sp. TSH20 R 61811 GCA_003115945.1 Azospirillum sp. TSH100 R 1162302 GCA_003115955.1 Azospirillum sp. TSH58 R 1910929 GCA_00315951.1 Azospirillum sp.		GCA_001315015.1	A. brasilense	Sp 7	1754523
GCA_008274945.1 A. brasilense Sp 7 1713974 GCA_007827425.1 A. brasilense Sp 7 T 585936 GCA_007828115.1 A. brasilense BR11002 449402 GCA_002940725.1 A. brasilense AbV5 310565 GCA_02940725.1 A. brasilense AbV6 236259 GCA_0224178045.1 A. brasilense JLH21 21812 GCA_002027385.1 A. brasilense JLH21 21812 GCA_00202745.1 A. brasilense Sp 7 101258 GCA_002027445.1 A. brasilense V6 90896 GCA_00311595.1 Azospirillum sp. Sp 7 85049 GCA_00311595.1 Azospirillum sp. TSH20 R 61811 GCA_00311595.1 Azospirillum sp. TSH20 R 61811 GCA_00311595.1 Azospirillum sp. TSH100 R 1162302 GCA_00311595.1 Azospirillum sp. TSH58 R 191029 GCA_00311595.1 Azospirillum sp. TSH58 R 191029 GCA_01314915.1 Azospirillum sp.		GCA_008274965.1	A. brasilense	Cd	1735377
GCA_007827425.1 A. brasilense Sp 7 T 585936 GCA_007828115.1 A. brasilense BR11002 449402 GCA_002940725.1 A. brasilense AbV5 310565 GCA_002940755.1 A. brasilense AbV6 236259 GCA_0024178045.1 A. brasilense JLH21 218812 GCA_002027385.1 A. brasilense Sp 7 101258 GCA_002027445.1 A. brasilense V6 90896 GCA_002027445.1 A. brasilense V6 90896 GCA_000404045.1 A. brasilense V6 90896 GCA_003115055.1 Azospirillum sp. Sp 7 Sp 7 GCA_0003115945.1 Azospirillum sp. TSH20 R 61811 GCA_003115975.1 Azospirillum sp. TSH7 5729 4 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH30 R 1910929 GCA_003115975.1 Azospirillum sp. TSH58 R 1910929 GCA_013340975.1 Azospiri		GCA_008274945.1	A. brasilense	Sp 7	1713974
GCA_007828115.1 A. brasilense BR11002 449402 GCA_002940725.1 A. brasilense AbV5 310565 GCA_002940755.1 A. brasilense AbV6 236259 GCA_0024178045.1 A. brasilense JLH21 218812 GCA_002027385.1 A. brasilense Sp 7 101258 GCA_002027445.1 A. brasilense V6 90896 GCA_002027445.1 A. brasilense V6 90896 GCA_000404045.1 A. brasilense FP2 29432 GCA_0003115055.1 Azospirillum sp. Sp 61811 GCA_003115945.1 Azospirillum sp. TSH20 R 61811 GCA_003115945.1 Azospirillum sp. TSH20 R 61811 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH8 R 1910925 GCA_003115975.1 Azospirillum sp. TSH8 R 1910225 GCA_013340975.1 Azospirillum sp. <td></td> <td>GCA_007827425.1</td> <td>A. brasilense</td> <td>Sp 7 т</td> <td>585936</td>		GCA_007827425.1	A. brasilense	Sp 7 т	585936
GCA_002940725.1 A. brasilense AbV5 310565 GCA_002940755.1 A. brasilense AbV6 236259 GCA_022178045.1 A. brasilense JLH21 218812 GCA_00207385.1 A. brasilense Sp 7 101258 GCA_00207445.1 A. brasilense Sp 7 101258 GCA_00207445.1 A. brasilense V6 90896 GCA_003116055.1 Azospirillum sp. Sp 7 85049 GCA_00404045.1 A. brasilense FP2 29432 3 GCA_003115935.1 Azospirillum sp. TSH20 R 61811 GCA_003115951.1 Azospirillum sp. TSH7 57929 4 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH58 R 1910925 GCA_003115975.1 Azospirillum sp. TSH58 R 1910925 GCA_00315995.1 Azospirillum sp. TSH58 R 1910925 GCA_003340975.1 A brasilense BR 11017 39437 7		GCA_007828115.1	A. brasilense	BR11002	449402
GCA_002940755.1 A. brasilense AbV6 236259 GCA_024178045.1 A. brasilense JLH21 218812 GCA_002027385.1 A. brasilense Sp 7 101258 GCA_002027445.1 A. brasilense Sp 7 101258 GCA_002027445.1 A. brasilense V6 90896 GCA_003116055.1 Azospirillum sp. Sp 7 85049 GCA_000404045.1 A. brasilense FP2 29432 3 GCA_003115935.1 Azospirillum sp. TSH20 R 61811 GCA_003115951.1 Azospirillum sp. TSH7 57929 4 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 119081 5 GCA_003115951.1 Azospirillum sp. TSH58 R 1910925 6 GCA_013340975.1 A. brasilense BR 11017 39437 7 GCA_013340975.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R		GCA_002940725.1	A. brasilense	AbV5	310565
GCA_024178045.1 A. brasilense JLH21 218812 GCA_002027385.1 A. brasilense Sp 7 101258 GCA_002027445.1 A. brasilense V6 90896 GCA_003116055.1 Azospirillum sp. Sp 85049 GCA_003116055.1 Azospirillum sp. Sp 85049 GCA_003115935.1 Azospirillum sp. FP2 29432 3 GCA_00311595.1 Azospirillum sp. TSH20 R 61811 GCA_00311595.1 Azospirillum sp. TSH7 57929 4 GCA_004923295.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115995.1 Azospirillum sp. TSH58 R 1910925 GCA_013340975.1 Azospirillum sp. TSH58 8752 6 GCA_013340975.1 A. brasilense BR 11017 39437 7 GCA_01340975.1 A. oryzae COC8 T 405582<		GCA_002940755.1	A. brasilense	AbV6	236259
GCA_002027385.1 A. brasilense Sp 7 101258 GCA_002027445.1 A. brasilense V6 90896 GCA_003116055.1 Azospirillum sp. Sp 85049 GCA_003116055.1 Azospirillum sp. Sp 85049 GCA_003115935.1 Azospirillum sp. TSH20 R 61811 GCA_003115935.1 Azospirillum sp. TSH7 57929 4 GCA_003115945.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115995.1 Azospirillum sp. TSH38 67952 GCA_003115995.1 Azospirillum sp. TSH58 R 1910925 GCA_013340975.1 A. brasilense SR80 R 88654 GCA_013340975.1 A. brasilense SR80 R 88654 GCA_00364795.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 <t< td=""><td></td><td>GCA_024178045.1</td><td>A. brasilense</td><td>JLH21</td><td>218812</td></t<>		GCA_024178045.1	A. brasilense	JLH21	218812
GCA_002027445.1 A. brasilense V6 90896 GCA_003116055.1 Azospirillum sp. Sp 85049 GCA_000404045.1 A. brasilense FP2 29432 3 GCA_003115935.1 Azospirillum sp. TSH20 R 61811 GCA_003115935.1 Azospirillum sp. TSH20 R 61811 GCA_003115945.1 Azospirillum sp. TSH7 57929 4 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115995.1 Azospirillum sp. TSH58 R 1910929 GCA_003115995.1 Azospirillum sp. TSH58 67952 6 GCA_013340975.1 A. brasilense SR80 R 88654 GCA_013340975.1 A. brasilense SR81 N 1118090 GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_01347285.1 A. lipoferum Sp5 b T 372840		GCA_002027385.1	A. brasilense	Sp 7	101258
GCA_003116055.1 Azospirillum sp. Sp 85049 GCA_000404045.1 A. brasilense FP2 29432 3 GCA_003115935.1 Azospirillum sp. TSH20 R 61811 GCA_003115945.1 Azospirillum sp. TSH7 57929 4 GCA_003115945.1 Azospirillum sp. TSH7 57929 4 GCA_004923295.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH38 R 1910925 GCA_003115995.1 Azospirillum sp. TSH58 R 1910925 GCA_003115995.1 Azospirillum sp. TSH58 R 1910925 GCA_003115995.1 Azospirillum sp. TSH58 R 1910925 GCA_0031340975.1 Azospirillum sp. TSH58 R 1910925 GCA_013340975.1 Azospirillum sp. TSH58 880 R 58654 GCA_003864795.1 A. oryzae COC8 T 405582 8 GCA_008364955.1 A. lipoferum Sp5 b T		GCA_002027445.1	A. brasilense	V6	90896
GCA_000404045.1 A. brasilense FP2 29432 3 GCA_003115935.1 Azospirillum sp. TSH20 R 61811 GCA_003115945.1 Azospirillum sp. TSH7 57929 4 GCA_004923295.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 19081 5 GCA_003115975.1 Azospirillum sp. TSH58 R 1910929 GCA_003115995.1 Azospirillum sp. TSH58 R 1910929 GCA_003115995.1 Azospirillum sp. TSH58 R 1910929 GCA_013340975.1 Azospirillum sp. TSH58 R 1910929 GCA_01340975.1 Azospirillum sp. TSH58 R 58654 GCA_01340975.1 Azospirillum sp. SR80 R 58654 GCA_01340975.1 A. brasilense SR80 R 58654 GCA_01340975.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp5 b T 323311 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_01340935.1 A. oleiclasticum R0Y112 R		GCA_003116055.1	Azospirillum sp.	Sp	85049
3 GCA_003115935.1 Azospirillum sp. TSH20 R 61811 GCA_003115945.1 Azospirillum sp. TSH7 57929 4 GCA_004923295.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 119081 5 GCA_003115995.1 Azospirillum sp. TSH58 R 1910929 GCA_003115995.1 Azospirillum sp. TSH58 R 1910929 GCA_0031340975.1 Azospirillum sp. TSH58 R 1910929 GCA_013340975.1 Azospirillum sp. TSH58 67952 6 GCA_013340975.1 A. brasilense BR 11017 39437 7 GCA_013340975.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_01340935.1 A.		GCA_000404045.1	A. brasilense	FP2	29432
GCA_003115945.1 Azospirillum sp. TSH7 57929 4 GCA_004923295.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 119081 5 GCA_003115975.1 Azospirillum sp. TSH100 R 1910929 GCA_003115995.1 Azospirillum sp. TSH58 R 1910929 GCA_003115995.1 Azospirillum sp. TSH58 R 1910929 GCA_003140975.1 Azospirillum sp. TSH58 R 1910929 GCA_013340975.1 Azospirillum sp. TSH58 67952 6 GCA_003584185.1 A. brasilense SR80 R 58654 GCA_013340975.1 A. oryzae KACC14407 R 1118090 GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_017876055.1 A. lipoferum Sp59b R 323311 GCA_013340935.1 A. oleiclasticum ROY112 R 270855 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 GCA_013423495.1 A. oleiclasticum RUY511 T 205901 10 GCA_013423495.1 A. oleic	3	GCA_003115935.1	Azospirillum sp.	TSH20 R	61811
4 GCA_004923295.1 Azospirillum sp. TSH100 R 1162302 GCA_003115975.1 Azospirillum sp. TSH100 R 119081 5 GCA_003119115.1 Azospirillum sp. TSH58 R 1910925 GCA_003115995.1 Azospirillum sp. TSH58 R 1910925 GCA_00315995.1 Azospirillum sp. TSH58 R 1910925 6 GCA_003584185.1 A. brasilense SR80 R 58654 GCA_013340975.1 A. brasilense BR 11017 39437 7 GCA_013347285.1 A. oryzae KACC14407 R 1118090 GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_01340935.1 A. oreiclasticum ROY112 R 270855 GCA_013423495.1 A. oleiclasticum ROY112 R 205901 10 GCA_01342345.1 A. oleiclasticum RUY511 T 205901 11 GCA_02000105.1 A. lipoferum RIC R 1392788		GCA_003115945.1	Azospirillum sp.	TSH7	57929
GCA_003115975.1 Azospirillum sp. TSH100 119081 5 GCA_003119115.1 Azospirillum sp. TSH58 R 1910925 GCA_003115995.1 Azospirillum sp. TSH58 R 1910925 6 GCA_003584185.1 A. brasilense SR80 R 58654 GCA_013340975.1 A. brasilense BR 11017 39437 7 GCA_013347285.1 A. oryzae KACC14407 R 1118090 GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_013340935.1 A. melinis TMCY0552 R 323311 GCA_013340935.1 A. melinis TMCY0552 T 107303 10 GCA_013423495.1 A. oleiclasticum R0Y112 R 270855 GCA_013423495.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788	4	GCA_004923295.1	Azospirillum sp.	TSH100 R	1162302
5 GCA_003119115.1 Azospirillum sp. TSH58 R 1910929 GCA_003115995.1 Azospirillum sp. TSH58 R 67952 6 GCA_003584185.1 A. brasilense SR80 R 58654 GCA_013340975.1 A. brasilense BR 11017 39437 7 GCA_013340975.1 A. oryzae KACC14407 R 1118090 GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_008364955.1 A. lipoferum 59b T 323311 GCA_013340935.1 A. melinis TMCY0552 R 323311 9 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 10 GCA_013423495.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788		GCA_003115975.1	Azospirillum sp.	TSH100	119081
GCA_003115995.1 Azospirillum sp. TSH58 67952 6 GCA_003584185.1 A. brasilense SR80 R 58654 GCA_013340975.1 A. brasilense BR 11017 39437 7 GCA_013340975.1 A. oryzae KACC14407 R 1118090 GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_008364955.1 A. lipoferum Sp59b T 372840 9 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_01340935.1 A. oleiclasticum ROY112 R 270855 GCA_013423495.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788	5	GCA_003119115.1	Azospirillum sp.	TSH58 R	1910929
6 GCA_003584185.1 A. brasilense SR80 R 58654 GCA_013340975.1 A. brasilense BR 11017 39437 7 GCA_013347285.1 A. oryzae KACC14407 R 1118090 GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_008364955.1 A. lipoferum Sp59b T 372840 9 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_013340935.1 A. melinis TMCY0552 T 107303 10 GCA_013423495.1 A. oleiclasticum R0Y112 R 270855 GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788		GCA_003115995.1	Azospirillum sp.	TSH58	67952
GCA_013340975.1 A. brasilense BR 11017 39437 7 GCA_013347285.1 A. oryzae KACC14407 R 1118090 GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_008364955.1 A. lipoferum Sp59b T 372840 9 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_01340935.1 A. melinis TMCY0552 T 107303 10 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788	6	GCA_003584185.1	A. brasilense	SR80 R	58654
7 GCA_013347285.1 A. oryzae KACC14407 R 1118090 GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_008364955.1 A. lipoferum Sp59b T 372840 9 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_01340935.1 A. melinis TMCY0552 T 107303 10 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788		GCA_013340975.1	A. brasilense	BR 11017	39437
GCA_008364795.1 A. oryzae COC8 T 405582 8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_008364955.1 A. lipoferum 59b T 372840 9 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_013340935.1 A. melinis TMCY0552 T 107303 10 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788	7	GCA_013347285.1	A. oryzae	KACC14407 R	1118090
8 GCA_024170005.1 A. lipoferum Sp59b R 388113 GCA_008364955.1 A. lipoferum 59b T 372840 9 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_013340935.1 A. melinis TMCY0552 T 107303 10 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788		GCA_008364795.1	A. oryzae	COC8 T	405582
GCA_008364955.1 A. lipoferum 59b T 372840 9 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_013340935.1 A. melinis TMCY0552 T 107303 10 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788	8	GCA_024170005.1	A. lipoferum	Sp59b R	388113
9 GCA_017876055.1 A. melinis TMCY0552 R 323311 GCA_013340935.1 A. melinis TMCY0552 T 107303 10 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788		GCA_008364955.1	A. lipoferum	59b т	372840
GCA_013340935.1 A. melinis TMCY0552 T 107303 10 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788 CCA_020005105.1 A. lipoferum R1C 1202789	9	GCA_017876055.1	A. melinis	ТМСY0552 к	323311
10 GCA_013423495.1 A. oleiclasticum ROY112 R 270855 GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788 CCA_020005105.1 A. lipoferum R1C 1202789		GCA_013340935.1	A. melinis	ТМСҮ0552 т	107303
GCA_013423485.1 A. oleiclasticum RWY511 T 205901 11 GCA_900177475.1 A. lipoferum R1C R 1392788 CCA_020005105.1 A. lipoferum R1C 1202788	10	GCA_013423495.1	A. oleiclasticum	ROY112 r	270855
11 GCA_900177475.1 A. lipoferum R1C R 1392788 CCA_0200051051 A. lipoferum D1C 1202788		GCA_013423485.1	A. oleiclasticum	RWY511 T	205901
CCA 0200051051 A lineformer D1C 1202709	11	GCA_900177475.1	A. lipoferum	R1C R	1392788
OCA_020005195.1 A. upojerum K1C 1392/88		GCA_020005195.1	A. lipoferum	R1C	1392788

APÊNDICE C – Agrupamento por índice de similaridade e seleção de estirpe.

$\mathbf{\alpha}$		~
Cor	itinu	acao

Agrupamento MASH	Nº. de acesso	Espécie	Сера	N50
12	GCA_900188385.1	Azospirillum sp.	RU38E	211820
	GCA_900188305.1	Azospirillum. sp.	RU37A	211820
13	GCA_001305595.1	A. thiophilum	BV-S R	1354909
	GCA_000960825.1	A. thiophilum	DSM 21654 t	1001552
14	GCA_007991775.1	Skermanella aerolata	NBRC106429 R	194416
	GCA_000936425.1	S. aerolata	5416Т-32 т	165927
15	GCA_000730165.2	Nitrospirillum amazonense	CBAmc R	2007914
	GCA_007827935.1	N. amazonense	BR 11145	318857
16	GCA_002868735.1	Niveispirillum cyanobacteriorum	TH16 R	3397866
	GCA_014640215.1	N. cyanobacteriorum	CGMCC1 T	640046
17	GCA_903856295.1	CAIZDL01 sp.	903856295 R	28151
	GCA_903928145.1	CAIZDL01 sp.	903856295	27033
18	GCA_903920145.1	BOG-933 sp.	903920145 R	23456
	GCA_903946835.1	BOG-933 sp.	903920145	23456
	GCA_903903135.1	BOG-933 sp.	903920145	23260
	GCA_903883715.1	BOG-933 sp.	903920145	17546

^R Referem-se as cepas selecionadas para representarem os agrupamentos;
 ^T Correspondem as cepas tipo para as respectivas espécies de acordo com dados obtidos do GenBank e LPSN.

Nº, de acesso	Esnécie	Cena	Hospedeiro	Isolamento	Local	Referência
	Lipere				Local	
GCA_900177475.1	A. agricola	R1C	Nicotiana tabacum	Raízes	NA	Genbank/NCBI
GCA_017876095.1	A. agricola	CC-HIH038	Não aplicável	Solo cultivado	CHN	(LIN et al., 2016)
GCA_000632475.2	A. argentinense	Az39	Triticum aestivum	Campo inativo	ARG	(DOS SANTOS FERREIRA et al., 2022)
GCA_008369925.1	A. argentinense	Az19	Triticum aestivum	Filosférico	ARG	(GARCÍA et al., 2020)
GCA_005222185.1	A. argentinense	MTCC4036	Poaceae	Rizosfera	IND	(SINGH et al., 2019)
GCA_005222165.1	A. argentinense	MTCC4035	Poaceae	Rizosfera	IND	(SINGH et al., 2019)
GCA_002895265.1	A. argentinense	REC3	Fragaria ananassa	Rizosfera	ARG	Genbank/NCBI
GCA_016652835.1	A. argentinense	D7	Cenchrus echinatus	Rizosfera	COL	(CORTÉS-PATIÑO et al., 2021)
GCA_003119195.2	A. baldaniorum	Sp245	Triticum aestivum	Endosfera	BRA	(BALDANI; BALDANI; DÖBEREINER, 1983)
GCA_013341015.1	A. baldaniorum	Vi22	Helianthus annuus	Rizosfera	BRA	(AMBROSINI et al., 2012)
GCA_007827765.1	A. baldaniorum	BR 12001	Brachiaria decumbens	Rizosfera	BRA	(TARRAND; KRIEG; DOBEREINER, 1978)
GCA_003584185.1	A. brasilense	SR80	Triticum aestivum	Plântulas	RUS	Genbank/NCBI
GCA_005222145.1	A. brasilense	MTCC4038	Poaceae	Rizosfera	IND	(SINGH et al., 2019)
GCA_003590795.1	A. cavernae	K2W22B-5	Não aplicável	Água da caverna	CHN	(ZHU et al., 2021)
GCA_022214805.1	A. doebereinerae	BF-21-28	Não aplicável	Reator de laboratório	RUS	Genbank/NCBI
GCA_003989665.1	A. doebereinerae	GSF71	Miscanthus giganteus	Rizosfera	DEU	(ECKERT et al., 2001)
GCA_016595245.1	A. endophyticum	YIM B02556	Paris polyphylla	Endosfera	CHN	(ZHAN et al., 2023)
GCA_019780885.1	A. formosense	Nfb7	Não aplicável	Solo agrícola	CHN	(LIN et al., 2012)
GCA_003966125.1	A. griseum	L-25-5 w-1	Não aplicável	Água do lago	CHN	(YANG et al., 2019)
GCA_000429625.1	A. halopraeferens	DSM 3675	Leptochloa fusca	Rizosfera	PAK	(REINHOLD et al., 1987)
GCA_001639105.2	A. humicireducens	SgZ-5	Biorreator	Húmus	CHN	(ZHOU et al., 2013)
GCA_024170005.1	A. lipoferum	Sp 59b	Triticum aestivum	Raízes	BRA	(TARRAND; KRIEG; DOBEREINER, 1978)
GCA_003115895.1	A. melinis	TSA6c	Oryza sativa	Arrozal	JPN	(JANG et al., 2019)
GCA_017876055.1	A. melinis	TMCY 0552	Melinis minutiflora	Endosfera	PAK	(PENG et al., 2006)
GCA_013423495.1	A. oleiclasticum	ROY-1-1-2	Não aplicável	Misturas petrolífera	CHN	(WU et al., 2021)
GCA_008365135.1	A. oryzae	Sh1	Sphagnum magellanicum	Pântano levantado	RUS	(GROUZDEV et al., 2019)
GCA_013347285.1	A. oryzae	KACC 14407	Oryza sativa	Rizosfera	KOR	(XIE; YOKOTA, 2005)
GCA_002573965.1	A. palustre	B2	Sphagnum magellanicum	Pântano levantado	RUS	(TIKHONOVA; GROUZDEV; KRAVCHENKO, 2019)
GCA_017876115.1	A. picis	IMMIB TAR-3	Não aplicável	Alcatrão de estrada	CHN	(LIN et al., 2009)
GCA_003233655.1	A. ramasamyi	M2T2B2	Não aplicável	Produto fermentado	KOR	(ANANDHAM et al., 2019)
GCA_017876155.1	A. rugosum	IMMIB AFH-6	Não aplicável	Solo contaminado	CHN	(YOUNG et al., 2008)
GCA_017876165.1	A. soli	CC-LY788	Não aplicável	Solo	CHN	(LIN et al., 2015)
GCA_002245955.1	A. tabaci	2A1	<i>Petúnia</i> ×hybrida Ultra™	Rizosfera	ARG	(TOFFOLI et al., 2021)
GCA_014596085.1	A. tabaci	W712	Nicotiana tabacum	Rizosfera	CHN	(DUAN et al., 2022)
GCA_003130795.1	A. thermophilum	CFH 70021	Não aplicável	Fonte termal	CHN	(ZHAO et al., 2020)

APÊNDICE D – Metadados dos genomas de Azospirillum reclassificados

Nº. de acesso	Espécie	Сера	Hospedeiro	Isolamento	Local	Referência
GCA_001305595.1	A. thiophilum	BV-S	Não aplicável	Fonte de sulfeto	RUS	(LAVRINENKO et al., 2010)
GCA_003115935.1	Azospirillum sp.	TSH20	Oryza sativa	Arrozal	JPN	(ISHII et al., 2011)
GCA_003116015.1	Azospirillum sp.	TSO22-1	Oryza sativa	Arrozal	JPN	(ISHII et al., 2011)
GCA_003116035.1	Azospirillum sp.	TSH64	Oryza sativa	Arrozal	JPN	(ISHII et al., 2011)
GCA_003116065.1	Azospirillum sp.	TSO5	Oryza sativa	Arrozal	JPN	(ISHII et al., 2011)
GCA_003116095.1	Azospirillum sp.	TSO35-2	Oryza sativa	Arrozal	JPN	(ISHII et al., 2011)
GCA_003119115.1	Azospirillum sp.	TSH58	Oryza sativa	Arrozal	JPN	(ISHII et al., 2011)
GCA_004923295.1	Azospirillum sp.	TSH100	Oryza sativa	Arrozal	JPN	(ISHII et al., 2011)
GCA_004923315.1	Azospirillum sp.	TSA2S	Oryza sativa	Arrozal	JPN	(JANG et al., 2019)
GCA_007827815.1	Azospirillum sp.	BR 11650	Digitaria decumbens	Associado à planta	BRA	Genbank/NCBI
GCA_007828645.1	Azospirillum sp.	BR 11796	Digitaria decumbens	Associado à planta	BRA	Genbank/NCBI
GCA_000010725.1	Azospirillum sp.	B510	Oryzae sativa	Endosfera	JPN	(KANEKO et al., 2010)
GCA_008365405.1	Azospirillum sp.	ATCC 49958	Homo sapiens	Ferida de mão	EUA	(HELSEL et al., 2006)
GCA_008365375.1	Azospirillum sp.	8365375	Homo sapiens	Incisão de mama	EUA	Genbank/NCBI
GCA_008364825.1	Azospirillum sp.	B21	Sphagnum sp.	Pântano levantado	RUS	(GROUZDEV et al., 2019)
GCA_003349955.1	Azospirillum sp.	HAMBI_3172	Oryza sativa	Raízes	IDN	(CAIRNS et al., 2020)
GCA_019805165.1	Azospirillum sp.	412522	Passiflora edulis	Rizoplano	BRA	(RODRIGUES et al., 2022)
GCA_005222205.1	Azospirillum sp.	MTCC4039	Poaceae	Rizosfera	IND	(SINGH et al., 2019)
GCA_014192915.1	Azospirillum sp.	OGB3	Não aplicável	Rizosfera	NA	Genbank/NCBI
GCA_900177515.1	Azospirillum sp.	A2P	Não aplicável	Rizosfera	NA	Genbank/NCBI
GCA_946480385.1	Azospirillum sp.	SRR14536363	Não aplicável	Rizosfera	CHN	Genbank/NCBI
GCA_007827795.1	Azospirillum sp.	BR 11026	Triticum aestivum	Rizosfera	BRA	Genbank/NCBI
GCA_016622085.1	Azospirillum sp.	BR 11669	Zea mays	Rizosfera	BRA	Genbank/NCBI
GCA_000283655.1	Azospirillum sp.	4B	Oryzae sativa	Rizosfera	FRA	(GIVAUDAN et al., 1993)
GCA_016632405.1	Azospirillum sp.	YIM DDC1	Não aplicável	Sedimento	CHN	Genbank/NCBI
GCA_023806445.1	Azospirillum sp.	A1-3	Não aplicável	Serrapilheira	DEU	Genbank/NCBI
GCA_022023855.1	Azospirillum sp.	2020WEIHUAK	Não aplicável	Solo	CHN	Genbank/NCBI
GCA_017356015.1	Azospirillum sp.	SYSU D00513	Não aplicável	Solo desértico	CHN	Genbank/NCBI

N°. de acesso	Espécie	Cepa	Tamanho	Contigs	G+C%	Completude	N50
GCA_900177475.1	A. agricola	R1C	7770695	8	69.43	99,9	1392788
GCA_017876095.1	A. agricola	CC-HIH038	7602107	85	69.74	99,8	264125
GCA_008369925.1	A. argentinense	Az19	7024214	68	68.27	100	410109
GCA_005222185.1	A. argentinense	MTCC4036	8121100	9	68.37	98,4	2058394
GCA_016652835.1	A. argentinense	D7	7541848	252	68.52	98,7	51805
GCA_005222165.1	A. argentinense	MTCC4035	7928656	8	68.53	99,2	1930550
GCA_000632475.2	A. argentinense	Az39	7391279	6	68.56	99 ,5	1901707
GCA_002895265.1	A. argentinense	REC3	7222371	121	68.71	98,3	146505
GCA_003119195.2	A. baldaniorum	Sp245	7682393	7	68.43	100	1776336
GCA_013341015.1	A. baldaniorum	Vi22	7440708	301	68.54	99 ,3	49562
GCA_007827765.1	A. baldaniorum	BR 12001	7364497	59	68.58	100	291662
GCA_003584185.1	A. brasilense	SR80	7144707	221	68.26	99 ,3	58654
GCA_005222145.1	A. brasilense	MTCC4038	7134170	6	68.31	99 ,5	1757525
GCA_003590795.1	A. cavernae	K2W22B-5	6460996	9	65.95	99 ,5	1794749
GCA_022214805.1	A. doebereinerae	BF-21-2S	6880504	177	68.92	98,5	84658
GCA_003989665.1	A. doebereinerae	GSF71	6989987	85	68.88	99,9	210241
GCA_016595245.1	A. endophyticum	YIM B02556	8174113	96	67.89	100	167341
GCA_019780885.1	A. formosense	Nfb7	6958594	7	68.55	99,7	1799820
GCA_003966125.1	A. griseum	L-25-5 w-1	5926722	136	66.58	99,8	164920
GCA_000429625.1	A. halopraeferens	DSM 3675	6512377	50	70.67	99,8	218753
GCA_001639105.2	A. humicireducens	SgZ-5	6862695	7	67.27	99 ,5	1014950
GCA_024170005.1	A. lipoferum	Sp 59b	7981339	53	67.27	100	388113
GCA_003115895.1	A. melinis	TSA6c	8341819	43	67.54	99,7	7635531
GCA_017876055.1	A. melinis	TMCY 0552	7952238	44	67.72	100	323311
GCA_013423495.1	A. oleiclasticum	ROY-1-1-2	7806073	93	69.51	99 ,5	270855
GCA_013347285.1	A. oryzae	KACC 14407	6809363	8	67.31	100	1118090
GCA_008365135.1	A. oryzae	Sh1	7274603	103	67.7	100	158668
GCA_002573965.1	A. palustre	B 2	7997491	43	67.8	99,7	945379
GCA_017876115.1	A. picis	IMMIB TAR-3	7015440	61	68.74	99,8	189959
GCA_003233655.1	A. ramasamyi	M2T2B2	6316263	8	67.99	100	919301
GCA_017876155.1	A. rugosum	IMMIB AFH-6	7798764	67	68.86	100	224319
GCA_017876165.1	A. soli	CC-LY788	6803056	71	67.51	100	259626

APÊNDICE E – Dados genômicos de Azospirillum

Cor	ntin	uação

N°. de acesso	Espécie	Сера	Tamanho	Contigs	G+C%	Completude	N50
GCA_008365375.1	Azospirillum sp.	8365375	6783278	104	68.41	99,8	187489
GCA_008365405.1	Azospirillum sp.	ATCC 49958	6875701	91	68.55	99,8	240061
GCA_004923315.1	Azospirillum sp.	TSA2S	8102478	10	67.2	99,8	903871
GCA_003116065.1	Azospirillum sp.	TSO5	6998131	203	67.32	99,8	64087
GCA_008364825.1	Azospirillum sp.	B21	7463459	57	67.33	100	465063
GCA_004923295.1	Azospirillum sp.	TSH100	7166382	8	67.38	100	1162302
GCA_003115935.1	Azospirillum sp.	TSH20	7455082	221	67.47	99,3	61811
GCA_000010725.1	Azospirillum sp.	B510	7599738	7	67.61	100	1455109
GCA_000283655.1	Azospirillum sp.	4B	6846400	7	67.67	99,9	1040425
GCA_003116035.1	Azospirillum sp.	TSH64	7901149	15	67.69	99,3	7543742
GCA_019805165.1	Azospirillum sp.	412522	7360543	101	67.89	89,8	175376
GCA_016622085.1	Azospirillum sp.	BR 11669	6747473	444	68.53	98,7	29589
GCA_007827795.1	Azospirillum sp.	BR 11026	6242579	56	68.64	99,9	282900
GCA_005222205.1	Azospirillum sp.	MTCC4039	7196248	6	68.94	99,9	1845095
GCA_003349955.1	Azospirillum sp.	HAMBI_3172	7139720	181	68.98	99,2	71229
GCA_007827815.1	Azospirillum sp.	BR 11650	6886674	40	69.04	99,9	409377
GCA_003119115.1	Azospirillum sp.	TSH58	7244074	7	69.12	100	1910929
GCA_007828645.1	Azospirillum sp.	BR 11796	6889693	41	69.2	99,9	422845
GCA_003116095.1	Azospirillum sp.	TSO35-2	7352042	22	69.32	99,7	1296839
GCA_003116015.1	Azospirillum sp.	TSO22-1	7353892	251	70.01	98,3	60493
GCA_023806445.1	Azospirillum sp.	A1-3	7711978	9	67.12	100	795522
GCA_900177515.1	Azospirillum sp.	A2P	7674686	10	67.59	99,7	864124
GCA_946480385.1	Azospirillum sp.	SRR14536363	6295567	201	67.8	93,3	45442
GCA_022023855.1	Azospirillum sp.	2020WEIHUAR	C 7389817	8	68.19	99 ,5	2048375
GCA_017356015.1	Azospirillum sp.	SYSU D00513	6903979	129	68.34	100	113065
GCA_016632405.1	Azospirillum sp.	YIM DDC1	7147505	97	68.44	99,7	212822
GCA_014192915.1	Azospirillum sp.	OGB3	7064444	74	68 .55	99,9	279333
GCA_002245955.1	A. tabaci	2A1	7254206	128	68.46	99,3	146186
GCA_014596085.1	A. tabaci	W712	6322916	96	68.66	99,7	147668
GCA_003130795.1	A. thermophilum	CFH 70021	6776313	9	69.83	96,8	1351902
GCA_001305595.1	A. thiophilum	BV-S	7609458	8	68.16	100	1354909

APÊNDICE G – Solubilização de fósforo e potássio por ácidos orgânicos.

APÊNDICE H – Solubilização de fósforo e potássio por de ácidos inorgânicos e

transportadores de potássio.

APÊNDICE I – Genes envolvidos com a aquisição de Fe

REFERÊNCIAS DO APÊNCIDE

AMBROSINI, A. et al. Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.). **Plant and Soil**, v. 356, n. 1–2, p. 245–264, 21 jul. 2012.

ANANDHAM, R. et al. ramasamyi sp. nov., a novel diazotrophic bacterium isolated from fermented bovine products. **International journal of systematic and evolutionary microbiology**, v. 69, n. 5, p. 1369–1375, 2019.

BALDANI, V. L. D.; BALDANI, J. I.; DÖBEREINER, J. Effects of inoculation on root infection and nitrogen incorporation in wheat. **Canadian Journal of Microbiology**, v. 29, n. 8, p. 924–929, 1 ago. 1983.

CAIRNS, J. et al. Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation. **Nature Ecology and Evolution**, v. 4, n. 10, p. 1385–1394, 1 out. 2020.

CORTÉS-PATIÑO, S. et al. Potential of Herbaspirillum and Consortium to Promote Growth of Perennial Ryegrass under Water Deficit. **Microorganisms**, v. 9, n. 1, p. 91, 1 jan. 2021.

DOS SANTOS FERREIRA, N. et al. Genome-based reclassification of brasilense Sp245 as the type strain of baldaniorum sp. nov. **International Journal of Systematic and Evolutionary Microbiology**, v. 70, n. 12, p. 6203–6212, 2020.

DOS SANTOS FERREIRA, N. et al. Genome-based reclassification of brasilense Az39 as the type strain of argentinense sp. nov. **International Journal of Systzmatic and Evolutionary Microbiology**, v. 72, n. 8, 1 ago. 2022.

DUAN, Y. Q. et al. tabaci sp. nov., a bacterium isolated from rhizosphere soil of Nicotiana tabacum L. Archives of Microbiology, v. 204, n. 1, p. 1–8, 1 jan. 2022.

ECKERT, B. et al. doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. **International Journal of Systematic and Evolutionary Microbiology**, v. 51, n. 1, p. 17–26, 2001.

GARCÍA, J. E. et al. Signs of a phyllospheric lifestyle in the genome of the stress-tolerant strain brasilense Az19. **Systematic and Applied Microbiology**, v. 43, n. 6, p. 126130, 1 nov. 2020.

GIVAUDAN, A. et al. Polyphenol oxidase in lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of lipoferum. **FEMS Microbiology Letters**, v. 108, n. 2, p. 205–210, 1 abr. 1993.

HELSEL, L. O. et al. Reclassification of Roseomonas fauriae Rihs et al. 1998 as a later heterotypic synonym of brasilense Tarrand et al. 1979. **International Journal of Systematic and Evolutionary Microbiology**, v. 56, n. 12, p. 2753–2755, 1 dez. 2006.

ISHII, S. et al. Identification and isolation of active N2O reducers in rice paddy soil. **The ISME Journal** 2011 5:12, v. 5, n. 12, p. 1936–1945, 16 jun. 2011.

JANG, J. et al. Potentially mobile denitrification genes identified in sp. Strain TSH58. **Applied and Environmental Microbiology**, v. 85, n. 2, 1 jan. 2019.

KANEKO, T. et al. Complete Genomic Structure of the Cultivated Rice Endophyte sp. B510. **DNA Research**, v. 17, n. 1, p. 37–50, 1 fev. 2010.

LAVRINENKO, K. et al. thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. **International journal of systematic and evolutionary microbiology**, v. 60, n. 12, p. 2832–2837, 2010.

LIN, S. Y. et al. formosense sp. nov., a diazotroph from agricultural soil. **International Journal of Systematic and Evolutionary Microbiology**, v. 62, n. 5, p. 1185–1190, 1 maio 2012.

LIN, S.-Y. et al. picis sp. nov., isolated from discarded tar. **International journal of** systematic and evolutionary microbiology, v. 59, n. 4, p. 761–765, 2009.

LIN, S.-Y. et al. soli sp. nov., a nitrogen-fixing species isolated from agricultural soil. **International journal of systematic and evolutionary microbiology**, v. 65, n. Pt_12, p. 4601–4607, 2015.

LIN, S.-Y. et al. agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. **International journal of systematic and evolutionary microbiology**, v. 66, n. 3, p. 1453–1458, 2016.

PENG, G. et al. melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. **International Journal of Systematic and Evolutionary Microbiology**, v. 56, n. 6, p. 1263–1271, 1 jun. 2006.

REINHOLD, B. et al. halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). **International Journal of Systematic and Evolutionary Microbiology**, v. 37, n. 1, p. 43–51, 1987.

RODRIGUES, G. L. et al. Characterization of cellular, biochemical and genomic features of the diazotrophic plant growth-promoting bacterium sp. UENF-412522, a novel member of the genus. **Microbiological Research**, v. 254, p. 126896, jan. 2022.

SINGH, C. et al. Whole-Genome Sequences of Four Indian Isolates of brasilense. **Microbiology Resource Announcements**, v. 8, n. 31, ago. 2019.

TARRAND, J. J.; KRIEG, N. R.; DOBEREINER, J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, gen. nov. and two species, lipoferum (Beijerinck) comb. nov. and brasilense sp. nov. https://doi.org/10.1139/m78-160, v. 24, n. 8, p. 967–980, 1978.

TIKHONOVA, E. N.; GROUZDEV, D. S.; KRAVCHENKO, I. K. palustre sp. Nov., a methylotrophic nitrogen-fixing species isolated from raised bog. **International Journal of Systematic and Evolutionary Microbiology**, v. 69, n. 9, p. 2787–2793, 1 set. 2019.

TOFFOLI, L. M. et al. Natural occurrence of brasilense in petunia with capacity to improve plant growth and flowering. **Journal of Basic Microbiology**, v. 61, n. 7, p. 662–673, 1 jul. 2021.

WU, D. et al. oleiclasticum sp. nov, a nitrogen-fixing and heavy oil degrading bacterium isolated from an oil production mixture of Yumen Oilfield. **Systematic and applied microbiology**, v. 44, n. 1, p. 126171, 2021.

XIE, C.-H.; YOKOTA, A. oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. **International Journal of Systematic and Evolutionary Microbiology**, v. 55, n. 4, p. 1435–1438, 1 jul. 2005.

YOUNG, C. C. et al. rugosum sp. nov., isolated from oil-contaminated soil. **International Journal of Systematic and Evolutionary Microbiology**, v. 58, n. 4, p. 959–963, 2008.

ZHAN, P. C. et al. Endophyticum sp. nov., an Endophyte of Paris Polyphylla Smith var. Yunnanensis. **Current Microbiology**, v. 80, n. 1, p. 1–8, 1 jan. 2023.

ZHAO, Z. et al. thermophilum sp. nov., isolated from a hot spring. **International Journal of Systematic and Evolutionary Microbiology**, v. 70, n. 1, p. 550–554, 2020.

ZHOU, S. et al. humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. **International journal of systematic and evolutionary microbiology**, v. 63, n. Pt_7, p. 2618–2624, 2013.

ZHU, H. Z. et al. Correction for Zhu et al., "Bacteria and Metabolic Potential in Karst Caves Revealed by Intensive Bacterial Cultivation and Genome Assembly". **Applied and Environmental Microbiology**, v. 87, n. 12, p. 1–4, 1 maio 2021.