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RESUMO 
 
Almeida-Silva, Fabrício, M.Sc., Universidade Estadual do Norte Fluminense Darcy 
Ribeiro, janeiro de 2022. Identificação e priorização de genes de resistência a 
estresses bióticos em soja (Glycine max L. Merr.) a partir da integração de 
associação genômica ampla e redes de coexpressão gênica. Orientador: Thiago 
Motta Venancio.  
 
Ao longo dos últimos anos, estudos de associação genômica ampla identificaram 

diversos marcadores moleculares associados à resistência a estresses bióticos. 

Entretanto, a identificação de genes causais a partir dos marcadores ainda é um 

desafio. A integração de dados genéticos com dados transcriptômicos tem se tornado 

uma alternativa promissora para solucionar esse problema. Nesse sentido, os dois 

primeiros capítulos desta dissertação dedicam-se à apresentação de novos softwares 

desenvolvidos para identificar genes causais de alta confiança: i. BioNERO, um 

pacote R destinado a inferir redes regulatórias e de coexpressão a partir de dados 

transcriptômicos e; ii. cageminer, um pacote R destinado a integrar redes de 

coexpressão e marcadores moleculares para identificar e priorizar genes candidatos 

associados a características quantitativas. No terceiro e quarto capítulo, aplicamos os 

softwares desenvolvidos para identificar e priorizar genes de soja (Glycine max) 

envolvidos na resistência a fungos fitopatogênicos e pragas, respectivamente. No 

terceiro capítulo, identificamos 188, 56, 11, 8, e 3 genes candidatos de alta confiança 

para resistência a Fusarium virguliforme, F. graminearum, Cadophora gregata, 

Macrophomina phaseolina e Phakopsora pachyrhizi, respectivamente. No quarto 

capítulo, identificamos 171, 7, e 228 genes candidatos de alta confiança para 

resistência a Aphis glycines, Spodoptera litura, e Heterodera glycines, 

respectivamente. Os genes candidatos priorizados estão altamente conservados no 

pangenoma da soja cultivada e, de modo geral, desempenham papel em processos 

relacionados à imunidade, como sinalização, estresse oxidativo, reconhecimento de 

padrões e formação de barreiras físicas. Ainda, identificamos os acessos mais 

resistentes do banco de germoplasma do USDA com base no número de alelos de 

resistência a cada patógeno. Os acessos mais resistentes não atingem o potencial 

máximo, indicando que há espaço para piramidar alelos de resistência em programas 

de melhoramento ou por meio de edição genômica. 

 

Palavras-chave: RNA-seq, QTL, genômica populacional, biotecnologia.  
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 ABSTRACT 

 
Almeida-Silva, Fabricio, M.Sc., Universidade Estadual do Norte Fluminense Darcy 
Ribeiro, January 2022. Identification and prioritization of soybean (Glycine max L. 
Merr.) resistance genes against biotic stresses by integrating genome-wide 
association studies and gene coexpression networks. Advisor: Thiago Motta 
Venancio.  
 
Over the last years, genome-wide association studies have identified molecular 

markers associated with resistance to biotic stresses. However, identifying causative 

genes from markers remains a challenge. Integrating genetic data with transcriptome 

data has become a promising alternative to address this problem. In this sense, the 

first two chapters of this dissertation describe novel softwares we have developed to 

identify high-confidence causative genes: i. BioNERO, an R package to infer regulatory 

and coexpression networks from transcriptome data and; ii. cageminer, an R package 

that integrates coexpression networks and molecular markers to identify and prioritize 

candidate genes associated with quantitative traits. In the third and fourth chapters, we 

applied these softwares to identify and prioritize soybean (Glycine max) genes involved 

in resistance to phytopathogenic fungi and pests. In the third chapter, we identified 

188, 56, 11, 8, and 3 high-confidence resistance genes against Fusarium virguliforme, 

F. graminearum, Cadophora gregata, Macrophomina phaseolina, and Phakopsora 

pachyrhizi, respectively. In the fourth chapter, we identified 171, 7, and 228 high-

confidence candidate resistance genes against A. glycines, S. litura, and H. glycines, 

respectively. Overall, the prioritized candidates are highly conserved in the 

pangenome of cultivated soybeans and play a role in immunity-related processes, such 

as signaling, oxidative stress, pattern recognition, and formation of physical barriers. 

Further, we identified the most resistant accessions against each pathogen in the 

USDA germplasm based on the number of resistance alleles. The most resistant 

accessions do not reach the maximum potential, indicating that there is room for allele 

pyramiding in breeding programs or through gene editing. 

 

Keywords: RNA-seq, QTL, population genomics, biotechnology.
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Introdução Geral 
 

A cultura da soja 

A soja (Glycine max (L.) Merr.) é a principal leguminosa produzida no mundo. 

O genoma da soja, publicado há uma década, apresenta fortes assinaturas de dois 

eventos de poliploidização, que ocorreram há cerca de 58 e 13 milhões de anos, 

respectivamente (Schmutz et al., 2010; Severin et al., 2010).  Em consequência 

desses eventos, 75% dos genes da soja estão presentes em múltiplas cópias, 

representando uma característica distintiva dessa espécie em relação às demais de 

sua família (Schmutz et al., 2010). 

Originada e domesticada no leste da China há cerca de 6-9 mil anos (Sedivy et 

al., 2017), a cultura da soja foi introduzida no Brasil no estado da Bahia e, 

posteriormente, no Rio Grande do Sul. A partir da década de 1960, o melhoramento 

genético da soja permitiu a transferência da maior fração da cultura para a região 

Centro-Oeste, onde havia vastas áreas cultiváveis, acelerando a produção 

dessa commodity agrícola (Cattelan and Dall’Agnol, 2018). Atualmente, o estado do 

Mato Grosso é o maior produtor nacional de soja, seguido do Paraná e Rio Grande do 

Sul (Cattelan and Dall’Agnol, 2018). 

Atualmente, o Brasil é o maior produtor de soja do mundo, seguido 

pelos Estados Unidos. O lucro obtido com exportações de soja (grão, farelo e óleo) na 

safra 2020/2021 foi de 35,23 bilhões de dólares, o que corresponde a 1,13% do PIB 

do ano (EMBRAPA SOJA, 2019). Além da relevância econômica nacional e global, os 

grãos representam uma fração significativa da dieta humana e animal (Yang et al., 

2019). A soja representa direta e indiretamente 70% das fontes de proteínas da 

dieta e 30% das fontes de óleo, enfatizando sua relevância para a segurança 

alimentar global (Gao et al., 2018).  

  
 

Estresse biótico em soja 

O estresse biótico, definido como o estresse causado por organismos vivos 

(i.e., patógenos e pragas), é um dos principais desafios para a produção global de 

soja (Kankanala et al., 2019). As doenças de soja causam um prejuízo anual de 4,55 

bilhões de dólares para os EUA (Bandara et al., 2020). As pragas, representadas 
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majoritariamente por insetos, causam prejuízo econômico de 17,7 bilhões de dólares 

no Brasil (Oliveira et al., 2014). 

As principais doenças fúngicas em soja incluem ferrugem, míldio, síndrome da 

morte súbita e antracnose (Kankanala et al., 2019). As doenças bacterianas causam 

danos como necrose, nanismo e lesão foliar (Wille et al., 2019). As doenças virais são 

causadas, principalmente, pelos vírus do mosaico da soja, vírus do mosqueado do 

feijão e vírus do mosqueado do amendoim, que causam diversos sintomas distintos 

(Chang et al., 2016). Ainda, a soja pode ser parasitada por nematoides e oomicetos, 

devastando grandes áreas de plantação (Rubiales et al., 2015). 

As plantas evoluíram diversos mecanismos de defesa contra o ataque de 

patógenos e pragas. O estresse biótico ativa uma cascata de sinalização decorrente 

do reconhecimento de padrões moleculares associados a patógenos (Kankanala et 

al., 2019). Esses mecanismos de resposta geram alterações na expressão gênica da 

planta, podendo inibir ou estimular a expressão de certos genes (Cohen and Leach, 

2019). Ao nível transcricional, a resposta a patógenos biotróficos ativa genes de vias 

dependentes de ácido salicílico, enquanto patógenos hemibiotróficos e necrotróficos 

ativam genes de sinalização por etileno e ácido jasmônico (Glazebrook, 2005). 

  

 

Estudos de associação genômica ampla (GWAS) 

O mapeamento de loci de caracteres quantitativos (QTL, do inglês Quantitative Trait 

Loci) a partir de cruzamentos biparentais é uma técnica amplamente utilizada (da Silva 

et al., 2019; de Ronne et al., 2020; Guo et al., 2020a; Hackenberg et al., 2020). 

Entretanto, essa técnica apresenta limitações, pois permite descrever somente a 

diversidade alélica limitada das linhagens parentais, além de apresentar baixa 

resolução genômica (Vuong et al., 2015). Os estudos de associação genômica ampla 

(GWAS, do inglês Genome-Wide Association Studies) representam um método 

alternativo para associar variantes genéticas a características de interesse (Peat et 

al., 2020). Os GWAS apresentam maior poder estatístico e maior resolução genômica, 

pois possibilitam análises com populações grandes e geneticamente diversas. 

Diversos GWAS já foram conduzidos para identificar polimorfismos de 

nucleotídeo único (SNPs, do inglês Single Nucleotide Polymorphisms) associados a 

resistência a estresse biótico em soja (Boudhrioua et al., 2020; Maldonado Dos Santos 
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et al., 2019; Rolling et al., 2020; Swaminathan et al., 2019; Vinholes et al., 2019). Por 

exemplo, Chang e colaboradores identificaram loci associados a resistência a 11 

doenças de soja (Chang et al., 2016) e diversos insetos-praga (Chang and Hartman, 

2017). Zhang e colaboradores identificaram no acesso PI 82278 o maior número de 

alelos de resistência à síndrome da morte súbita, uma das doenças fúngicas mais 

severas em soja (Zhang et al., 2015). Acessos com grande número de alelos de 

resistência podem ser usados para iniciar programas de melhoramento genético e 

seleção assistida por marcadores, gerando populações mais resistentes ao estresse 

biótico.  

A identificação de genes candidatos a partir dos SNPs significativos obtidos 

pelos GWAS ainda é arbitrária. Diversos autores selecionam como candidatos 

os genes em alto desequilíbrio de ligação com os SNPs significativos (Boudhrioua et 

al., 2020; Maldonado Dos Santos et al., 2019; Tran et al., 2019). Outros, por sua vez, 

selecionam os genes localizados em intervalos arbitrários (e.g., 50 kbp) em relação 

aos SNPs significativos (Moellers et al., 2017; Zhao et al., 2017). Ambos os critérios 

apresentam taxas altas de falso-positivos e falso-negativos, seja por uma quantidade 

variável de recombinação no painel de associação ou pela seleção de intervalos que 

desconsiderem genes causais (Michno et al., 2020). 

  

  

Biologia de sistemas e redes de coexpressão  

Os recentes avanços nas tecnologias de sequenciamento possibilitaram o surgimento 

e desenvolvimento da biologia de sistemas (Lavarenne et al., 2018). A biologia de 

sistemas consiste na análise de componentes moleculares (e.g., genes, proteínas, 

metabólitos), não como entidades independentes, mas como partes de uma rede 

complexa e dinâmica (Gaudinier and Brady, 2016). As redes de coexpressão (GCNs, 

do inglês Gene Coexpression Networks) são representadas por grafos cujos vértices 

representam genes, e arestas representam as correlações entre pares de genes 

(Fuller et al., 2007). 

As GCNs têm sido amplamente utilizadas para estudar a regulação 

transcricional e evolução de plantas (Du et al., 2017; Huang et al., 2019; Wisecaver et 

al., 2017). Por exemplo, Wu e colaboradores reconstruíram uma GCN em soja e 

identificaram um grupo de genes relacionados à nodulação em leguminosas (Wu et 

al., 2019). Almeida-Silva e colaboradores reconstruíram uma GCN com 1284 
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amostras de RNA-seq de soja e identificaram potenciais reguladores de vias como 

biossíntese de lignina, resposta a fungos e fotossíntese, além de elucidar a dinâmica 

da regulação transcricional de genes duplicados (Almeida-Silva et al., 2020). 

Devido ao seu potencial de detectar padrões em larga escala, as GCNs têm 

sido integradas a métodos de genômica populacional, como GWAS (Guo et al., 2020b; 

Schaefer et al., 2018). A base lógica dessa abordagem deriva da pressuposição de 

que genes pertencentes a um mesmo processo biológico são co-regulados 

(i.e.,  coexpressos). Usando essa abordagem integrativa, Schaefer e colaboradores 

identificaram genes em milho (Zea mays) relacionados ao acúmulo de diversos íons 

(Guo et al., 2020b; Schaefer et al., 2018). Essa abordagem promissora pode acelerar 

e otimizar a identificação de genes candidatos envolvidos em processos biológicos de 

interesse.  

Esta dissertação buscou identificar genes candidatos de alta confiança para 

resistência a estresses bióticos em soja. Os capítulos seguintes são compilações de 

artigos independentes produzidos durante o curso de mestrado.  Ao final da 

dissertação, apresentamos título e resumo de outros artigos produzidos durante o 

curso de mestrado, mas que não estão vinculados a esse projeto principal.
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ABSTRACT 

Summary 

Currently, standard network analysis workflows rely on many different packages, often 

requiring users to have a solid statistics and programming background. Here, we 

present BioNERO, an R package that aims to integrate all aspects of network analysis 

workflows, including expression data preprocessing, gene coexpression and 

regulatory network inference, functional analyses, and intra and interspecies network 

comparisons. The state-of-the-art methods implemented in BioNERO ensure that 

users can perform all analyses with a single package in a simple pipeline, without 

needing to learn a myriad of package-specific syntaxes. BioNERO offers a user-

friendly framework that can be easily incorporated in systems biology pipelines. 

 

Availability and implementation 

The package is available at Bioconductor 

(http://bioconductor.org/packages/BioNERO). 
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1 Introduction 

To date, several packages have been developed to infer gene coexpression networks 

(GCNs) and gene regulatory networks (GRN) from expression data, such as WGCNA 

(Langfelder and Horvath, 2008), CEMiTool (Russo et al., 2018), petal (Petereit et al., 

2016), and minet (Meyer et al., 2008). However, none of them can handle all aspects of 

network analysis workflows, and users are required to use other packages to build a 

standard analysis pipeline. Further, network inference requires a solid linear algebra and 

statistics background, resulting in a struggle for inexperienced researchers to properly 

preprocess their expression data and extract biologically meaningful information from the 

inferred networks. 

Here, we present BioNERO (Biological Network Reconstruction Omnibus), an 

R/Bioconductor package that integrates all steps of network inference workflows in a 

single package. BioNERO uses state-of-the-art methods to preprocess expression data, 

infer GCNs and GRNs from expression data, analyze networks for biological 

interpretations, and compare networks within and across species. Additionally, BioNERO 

can be used to explore topological properties of protein-protein interaction networks, such 

as hub identification and community detection. 

 

2 Methods 

BioNERO is an R package that integrates existing functionalities and introduces new 

ones. The input data can be common Bioconductor classes, such as 

SummarizedExperiment objects (Morgan et al., 2020) for expression data, or basic R 

object classes, ensuring interoperability with other packages. Long-running functions, 

such as that used for Fisher’s exact tests in overrepresentation analyses, have been 

parallelized with BiocParallel (Morgan et al., 2021) to increase speed. A summary of the 

BioNERO algorithm is described in Figure 1. 
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Figure 1. Summary of the BioNERO algorithm. From a raw gene expression matrix, users can preprocess 

their data and infer GRNs and GCNs, and the latter can be used for comparisons within and across species. 

The possible downstream network analyses are hub identification, functional enrichment, gene-/module-

trait associations, visualization, community detection (for GRNs and PPI), and calculation of network 

statistics. 

  

3 Results 

3.1 Data preprocessing 

Networks inferred from unfiltered data often do not satisfy the scale-free topology (SFT) 

assumption. Although this can be a property of the input data (particularly for 

heterogenous data sets), this issue mainly results from a lack of systematic 

preprocessing. With BioNERO, users can preprocess their expression data prior to 

network inference to i. remove missing data; ii. remove genes with low expression across 

samples; iii. remove outliers; iv. select genes with the highest variances (optional) and; v. 

remove confounders that could introduce false-positive correlations.  
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Outlier removal is based on the standardized connectivity (Zk) method, which can 

detect outliers that other methods (e.g., hierarchical clustering) cannot and, hence, it is 

more suitable for network analysis (Oldham et al., 2012). Adjusting for confounders relies 

on a principal component-based method implemented in the Bioconductor package sva 

(Parsana et al., 2019; Leek et al., 2021). The resulting expression matrix can be quantile 

normalized to make it suitable for parametric tests. Count data can also be variance 

stabilizing transformed with DESeq2’s algorithm (Love et al., 2014) to make the 

expression matrix approximately homoscedastic. 

 

3.2 Gene coexpression network inference 

GCN inference from expression data in BioNERO relies on the popular Weighted Gene 

Coexpression Network Analysis (WGCNA) algorithm, implemented in the WGCNA R 

package (Langfelder and Horvath, 2008). A matrix of pairwise gene-gene correlations can 

be calculated with Pearson’s r, Spearman’s ρ, or biweight midcorrelation (median-based, 

which is less sensible to outliers), and it is further transformed to an adjacency matrix to 

amplify disparities. Users can infer three types of GCNs (signed, signed hybrid, or 

unsigned), and network type affects the way adjacency matrices are calculated. Signed 

networks (default) preserve correlation signs, so positive and negative correlation 

coefficients are interpreted as different. Signed hybrid networks treat all negative 

correlation coefficients as zero, so only positive correlations are considered. Unsigned 

networks ignore correlation signs, so positive and negative values are not distinguished. 

 

3.3 Gene regulatory network inference 

Different GRN inference algorithms can be the best performers depending on the 

benchmark expression data set, as demonstrated by Marbach et al. (2012). This 

observation inspired the “wisdom of the crowds” principle for GRN inference, which 

consists in calculating average ranks for all edges across different algorithms to obtain 

consensus, high-confidence edges (Marbach et al., 2012). BioNERO offers three widely 

used GRN inference algorithms: GENIE3, imported from the R package GENIE3 (Huynh-

Thu et al., 2010); ARACNE, imported from the R package minet (Margolin et al., 2006), 

and CLR, also from minet (Faith et al., 2007). However, choosing the most appropriate 
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number of top edges to keep is a persisting bottleneck, and users often pick an arbitrary 

number. We implemented a method to simulate different networks by splitting the graph 

in n subgraphs, each containing the top nth quantiles. Then, we calculate SFT fit statistics 

for each subgraph and select the top number of edges that leads to the best SFT fit. 

 

3.4 Module detection and network statistics 

Module detection in GCNs relies on the dynamicTreeCut (Langfelder et al., 2008) 

package as implemented in WGCNA. After module detection, very similar modules can 

be merged if the correlation of their eigengenes (first principal component) is greater than 

a given threshold (by default, 0.8). Module stability can be assessed to test if the network 

topology depends on a small subset of samples. For physical networks (GRNs and PPI), 

community detection relies on the cluster_() functions from the R package igraph (Csardi 

and Nepusz, 2006), and several methods are available, such as infomap (default), edge 

betweenness, fast greedy, label propagation, walktrap, and louvain. Additionally, 

BioNERO imports igraph to calculate main network statistics, namely connectivity, scaled 

connectivity, clustering coefficient, maximum adjacency ratio, density, centralization, 

heterogeneity, number of cliques, diameter, betweenness, and closeness. 

 

3.5 Functional analyses and network exploration 

After inferring GCNs, users can input a data frame of gene annotation to perform module 

overrepresentation analysis (ORA) and test if modules are enriched in genes associated 

with a particular biological process, metabolic pathway, protein domain, or any other 

annotation. ORA can also be performed for a user-defined gene set, even if they are in 

different modules. ORA results can be interpreted in combination with gene-/module-trait 

associations, which identify genes and/or modules whose expression levels increase or 

decrease in a particular condition. Further, users can identify network hubs as the top 

10% most highly connected nodes (PPI and GRNs) or as the intersection between the 

top 10% most highly connected genes and genes with module membership ≥0.8 (GCN), 

as defined in a previous work from our group (Almeida-Silva et al., 2020). Users can also 

extract subgraphs for a particular module or custom gene set, and they can be used for 

visualization or calculation of statistics. For all subgraph extractions, users can verify if 
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the graphs fit the SFT, a characteristic of real-world biological networks (Barabási et al., 

2011). 

 

3.6 Exploratory analyses and data visualization 

BioNERO offers data visualization functions for exploratory analyses (principal 

component analysis and heatmaps) and visualization of results (Figure 2). The graphical 

functions for gene-/module-trait associations, dendrogram of genes and modules, and 

eigengene network rely on the base plotting system, with functions imported from 

WGCNA (Langfelder and Horvath, 2008). Gene expression and sample correlation 

heatmaps rely on the ComplexHeatmap package (Gu et al., 2016). The ggplot2 system 

is used for all other data visualizations, namely principal component analysis plots, 

module expression profile, frequency of genes per module, and network plots. Static 

network plots rely on the ggnetwork package (Briatte, 2021), while interactive networks 

are powered by the D3 Javascript library with the R package networkD3 (Allaire et al., 

2017). 
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Figure 2. Overview of plots that can be created with BioNERO’s built-in functions. A. Principal component 

analysis of samples. Users can plot principal component (PC) 1 vs PC2, PC1 vs PC3, and PC2 vs PC3. 

Variance explained by each PC is included in the axis labels. B. Gene expression heatmap. Genes and 

samples can be hierarchically clustered. Gene and sample metadata can be given as input, so a color code 

will be added to rows/columns. C. Dendrogram of genes and modules before and after merging similar 

modules. D. Eigengene network. Colors display correlations between module eigengenes. E. Absolute 

frequency of genes per module. F. Module-trait correlations. This heatmap shows modules comprising 

genes whose expression levels significantly increase or decrease in a particular condition. G. Gene 

expression profile across samples for a particular module. H. Static GCN visualization. Labels indicate hub 

genes. I. Static GRN visualization. Green triangles represent regulators, while gold circles represent targets. 

All plots were created with the example data from the package’s vignettes. 

 

3.7 Network comparison 

GCNs inferred from different expression sets have similarities and divergences. BioNERO 

offers two network comparison approaches, namely consensus module identification and 

module preservation. Consensus modules are gene modules that co-occur in networks 
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inferred from independent expression sets, and they can be used to explore core 

components of the studied phenotype that are not affected by experimental effects or 

natural biological variation. While consensus modules identification focuses on the 

similarities between networks, module preservation focuses on the differences, and it can 

be used to explore patterns of transcriptional divergence within and across species. 

Consensus module identification relies on the R package WGCNA, while network 

preservation relies on non-parametric permutation tests implemented in the R package 

NetRep (Ritchie et al., 2016). For interspecies comparisons, BioNERO can interoperate 

with OrthoFinder (Emms and Kelly, 2015) to analyze expression profiles at the orthogroup 

level. 

 

3.8 Comparing BioNERO to other packages 

We compared BioNERO to the main network inference-related R packages, namely 

WGCNA (Langfelder and Horvath, 2008), CEMiTool (Russo et al., 2018), petal (Petereit 

et al., 2016), minet (Meyer et al., 2008), and GENIE3 (Huynh-Thu et al., 2010). All 

packages were given points based on the functionalities they offer (Table 1). BioNERO 

outperforms all existing network inference-related R packages, as it acts as a hub by 

integrating different functionalities. Although some functionalities available in BioNERO 

are already included in other packages, none of them include all of BioNERO’s 

functionalities. The second package in number of functionalities is WGCNA, with only half 

of BioNERO’s potential. Although CEMiTool is easy to use and can infer GCNs with a 

single function, it has fewer functionalities than WGCNA. The other R packages are 

limited to a specific goal and, hence, they have the fewest points. 
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Table 1. Comparative view of functionalities in BioNERO and other network inference-related R 
packages. 

 
Functionalities BioNERO WGCNA CEMiTool petal minet GENIE3 

Gene filtering  1 0 1 0 0 0 

Correction for confounders 1 0 0 0 0 0 

GCN inference (signed, signed hybrid, 

unsigned) 

3 3 2 1 1 0 

GRN inference (MI, RF, PC) 3 0 0 0 2 1 

Module functional enrichment 1 1 1 0 0 0 

Topology-based network filtering 1 0 0 1 0 0 

Static network visualization 1 0 1 0 0 0 

Interactive network visualization 1 0 0 0 0 0 

Intraspecies network comparison 1 1 0 0 0 0 

Interspecies network comparison 1 0 0 0 0 0 

Calculation of network statistics 1 1 0 1 0 0 

Community detection (GCN, GRN, PPI) 3 1 1 1 0 0 

Hub identification 1 1 1 0 0 0 

Total points 19 8 7 4 3 1 

GCN: Gene Coexpression Network. GRN: Gene Regulatory Network. PPI: Protein-Protein Interaction. MI: Mutual 
Information. RF: Random Forests. PC: Partial Correlations. 

 

 

3.9 Application to real data sets 

A use case using maize (Zea mays) and rice (Oryza sativa) gene expression data 

obtained from Shin et al. (2020) is available as Supplementary Text. The maize RNA-seq 

data set comprises 39,604 genes and 116 samples, while the rice RNA-seq data set 

comprises 35,667 genes and 265 samples. 

 

4 Conclusions 

BioNERO is a novel R package that integrates all steps of network analysis pipelines, 

providing users with a simple framework for GCN and GRN inference from expression 

data. This package can be easily integrated in systems biology pipelines and will likely 

accelerate biological network analysis projects. 
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ABSTRACT 

Summary 
Although genome-wide association studies (GWAS) identify variants associated with 

traits of interest, they often fail in identifying causative genes underlying a given 

phenotype. Integrating GWAS and gene coexpression networks can help prioritize high-

confidence candidate genes, as the expression profiles of trait-associated genes can be 

used to mine novel candidates. Here, we present cageminer, the first R package to 

prioritize candidate genes through the integration of GWAS and coexpression networks. 

Genes are considered high-confidence candidates if they pass all three filtering criteria 

implemented in cageminer, namely physical proximity to SNPs, coexpression with known 

trait-associated genes, and significant changes in expression levels in conditions of 

interest. Prioritized candidates can also be scored and ranked to select targets for 

experimental validation. By applying cageminer to a real data set, we demonstrate that it 

can effectively prioritize candidates, leading to >99% reductions in candidate gene lists. 

 

Availability and implementation 

The package is available at Bioconductor (http://bioconductor.org/packages/cageminer).  

 

http://bioconductor.org/packages/cageminer
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1 Introduction 

Over the years, several genome-wide association studies (GWAS) have identified single-

nucleotide polymorphisms (SNPs) associated with phenotypes of interest, such as 

agronomic traits in crops, production traits in livestock, and complex human disorders 

(Boudhrioua et al., 2020; Maldonado Dos Santos et al., 2019; Wu et al., 2020; Buzanskas 

et al., 2014). However, finding causative genes from SNPs remains a major bottleneck 

(Baxter, 2020). First, most GWAS-derived SNPs are located in non-coding portions of the 

genome, which can be regulatory regions very far from a causative gene (Peat et al., 

2020). Further, causative variants can be in strong linkage disequilibrium (LD) with non-

causative ones, leading to large LD blocks with dozens of putative candidates (Michno et 

al., 2020).  

 To address this issue, integrating GWAS with the vast amounts of RNA-seq data 

in public repositories has become a promising solution, particularly using gene 

coexpression network (GCN)-based approaches (Michno et al., 2020; Yao et al., 2020; 

Guo et al., 2020). Currently, the only statistical framework that automates such integration 

is Camoco, a Python library that identifies sets of densely connected genes for a given 

sliding window relative to each SNP (Schaefer et al., 2018). However, as sliding windows 

are expanded (e.g., 50 kb), Camoco loses the ability to discover candidate genes 

because of background noise (Michno et al., 2020). This is a major limitation, as SNPs 

can be up to 2 Mb away from the causative genes if they are in distal regions (Brodie et 

al., 2016).  

Here, we present cageminer (candidate gene miner), the first R/Bioconductor 

package that integrates GCNs and GWAS-derived SNPs to prioritize candidate genes 

associated with traits of interest. cageminer uses a guide gene-based approach to 

discover novel candidates that are coexpressed with known trait-associated genes and 

are significantly induced or repressed in conditions of interest. By relying on researchers’ 

prior knowledge, cageminer can identify high-confidence candidate genes even in 

megabase-scale genomic intervals. This package will be instrumental in helping 

researchers discover genes underlying important quantitative traits. 
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2 Implementation 

cageminer is implemented as an R package, and all input and output objects belong to 

base R or common Bioconductor classes to ensure interoperability with other packages. 

Our algorithm requires three types of input data: i. SNP positions, which must be passed 

as GRanges or GRangesList objects (for single trait and multiple traits, respectively) 

(Lawrence et al., 2013); ii. guide genes, either as a character vector or a data frame; and 

iii. gene coexpression network, which must be passed as a list as returned by the function 

exp2gcn() from the Bioconductor package BioNERO (Almeida-Silva and Venancio, 

2021). 

 

2.1 Algorithm description 

cageminer identifies high-confidence candidate genes in three sequential steps (Fig. 1). 

In the first step, all genes within a sliding window (default: 2 Mb) relative to each SNP are 

selected as putative candidates. The default 2 Mb sliding window aims to minimize false-

negative rates, as SNPs can be located in distal regions (Brodie et al., 2016). If the 2 Mb 

window returns too many genes to start with, users can simulate different window sizes 

and visualize the number of genes in a line plot (Supplementary Text). Additionally, users 

can input a custom interval for each SNP (e.g., based on linkage disequilibrium) by 

disabling the sliding window expansion. 

 For the second step of the algorithm, cageminer relies on the module_enrichment() 

function from the BioNERO package (Almeida-Silva and Venancio, 2021) to perform an 

enrichment analysis and find candidates from step 1 that co-occur in modules enriched 

in guide genes. Guides are genes known to be associated with the phenotype of interest, 

which can be passed as a single gene set in a character vector or as a 2-column data 

frame with gene IDs in the first column and gene classification (e.g., Gene Ontology 

Terms or KEGG pathways) in the second column. In the latter case, cageminer will look 

for modules enriched in each class of guide genes rather than guides in general. 

 In the third step, the gene expression matrix used to infer the GCN is correlated to 

a binary matrix mij containing 1 if the sample m corresponds to the condition j, and 0 

otherwise. This calculation, also known as gene significance, returns a point biserial 

correlation coefficient (rpb) (Langfelder and Horvath, 2008) that indicates if genes have 
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significantly increased or decreased expression levels in a particular condition. Further, 

as genes can be negative regulators of the phenotype of interest, negative correlation 

coefficients are also treated as biologically meaningful. Thus, the absolute value of rpb is 

considered to define a gene significance threshold, as well as Student asymptotic P-

values for correlation significance (by default, rpb ≥0.2 and P <0.05). 

 

 
Fig. 1. Summary of the cageminer algorithm. Candidate gene prioritization is performed in three sequential 

steps that can be run as a pipeline (recommended) or independently. The steps can be interpreted as 

different sources of evidence that candidates are causative genes. Thus, candidates that pass all three 

steps are considered high-confidence candidates. 

 

2.2 Gene scoring 

To score the prioritized candidate genes and further select the top n genes for validation, 

genes can be scored with the formula below: 

𝑆𝑖 = 𝑟𝑝𝑏 𝜅 

where 

𝜅 = 2 if the gene is a transcription factor 

𝜅 = 2 if the gene is a hub 

𝜅 = 3 if the gene is a hub and a transcription factor 

𝜅 = 1 if the gene is neither a hub nor a transcription factor 
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3 Application to a real dataset 

A use case using RNA-seq on pepper (Capsicum annuum) response to Phytophthora 

root rot (Kim et al., 2018), as well as GWAS SNPs associated with resistance to 

Phytophthora root rot (Siddique et al., 2019) is available in the Supplementary Text. 

Pepper genes encoding transcription factors were downloaded from PlantTFDB 4.0 (Jin 

et al., 2017), and plant defense-related genes (MapMan annotations) were obtained from 

PLAZA Dicots 3.0 (Proost et al., 2015). From a list of 1265 putative candidates, cageminer 

identified 5 high-confidence candidate resistance genes (99.6% reduction). All candidates 

encode proteins related to known plant immunity-related processes (e.g., immune 

signaling, oxidative stress, and lignan biosynthesis), supporting the effectiveness of the 

algorithm in finding biologically meaningful genes. 

 

4 Conclusions 

cageminer is the first R package to integrate GWAS-derived SNPs and gene 

coexpression networks to prioritize candidate genes involved in phenotypes of interest. 

This package will likely contribute to the advancement of population genomics and to the 

identification of genes for biotechnological applications. 

 

Acknowledgements 

This work was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do 

Estado do Rio de Janeiro (FAPERJ; grants E-26/203.309/2016 and E-26/203.014/2018), 

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES; 

Finance Code 001), and Conselho Nacional de Desenvolvimento Científico e 

Tecnológico. The funding agencies had no role in the design of the study and collection, 

analysis, and interpretation of data and in writing. 

Conflicts of interest: none declared.



 37 

REFERENCES 

 

Almeida-Silva, F. and Venancio, T.M. (2021). BioNERO: an all-in-one R/Bioconductor 

package for comprehensive and easy biological network reconstruction. bioRxiv: 

2021.04.10.439287. 

Baxter, I. (2020). We aren’t good at picking candidate genes, and it’s slowing us down. 

Curr. Opin. Plant Biol. 54: 57–60. 

Boudhrioua, C., Bastien, M., Torkamaneh, D., and Belzile, F. (2020). Genome-wide 

association mapping of Sclerotinia sclerotiorum resistance in soybean using whole-

genome resequencing data. BMC Plant Biol. 20: 195. 

Brodie, A., Azaria, J.R., and Ofran, Y. (2016). How far from the SNP may the causative 

genes be? Nucleic Acids Res. 44: 6046–6054. 

Buzanskas, M.E. et al. (2014). Genome-Wide Association for Growth Traits in Canchim 

Beef Cattle. PLoS One 9: e94802. 

Guo, J., Li, C., Zhang, X., Li, Y., Zhang, D., Shi, Y., Song, Y., Li, Y., Yang, D., and 

Wang, T. (2020). Transcriptome and GWAS analyses reveal candidate gene for 

seminal root length of maize seedlings under drought stress. Plant Sci. 292. 

Jin, J., Tian, F., Yang, D.C., Meng, Y.Q., Kong, L., Luo, J., and Gao, G. (2017). 

PlantTFDB 4.0: toward a central hub for transcription factors and regulatory 

interactions in plants. Nucleic Acids Res 45: D1040–D1045. 

Kim, M.S., Kim, S., Jeon, J., Kim, K.T., Lee, H.A., Lee, H.Y., Park, J., Seo, E., Kim, 

S.B., Yeom, S.I., Lee, Y.H., and Choi, D. (2018). Global gene expression profiling 

for fruit organs and pathogen infections in the pepper, Capsicum annuum L. Sci. Data 

5: 1–6. 

Langfelder, P. and Horvath, S. (2008). WGCNA: an R package for weighted correlation 

network analysis. BMC Bioinformatics 9: 559. 

Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., 

Morgan, M.T., and Carey, V.J. (2013). Software for Computing and Annotating 



 38 

Genomic Ranges. PLoS Comput. Biol. 9: 1–10. 

Maldonado Dos Santos, J.V., Ferreira, E.G.C., Passianotto, A.L.D.L., Brumer, B.B., 

Santos, A.B. Dos, Soares, R.M., Torkamaneh, D., Arias, C.A.A., Belzile, F., 

Abdelnoor, R.V., and Marcelino-Guimarães, F.C. (2019). Association mapping of 

a locus that confers southern stem canker resistance in soybean and SNP marker 

development. BMC Genomics 20: 1–13. 

Michno, J.M., Liu, J., Jeffers, J.R., Stupar, R.M., and Myers, C.L. (2020). Identification 

of nodulation-related genes in Medicago truncatula using genome-wide association 

studies and co-expression networks. Plant Direct 4: 1–10. 

Peat, G., Jones, W., Nuhn, M., Marugán, J.C., Newell, W., Dunham, I., and Zerbino, 

D. (2020). The open targets post-GWAS analysis pipeline. Bioinformatics: 1–2. 

Proost, S., Van Bel, M., Vaneechoutte, D., Van de Peer, Y., Inzé, D., Mueller-Roeber, 

B., and Vandepoele, K. (2015). PLAZA 3.0: an access point for plant comparative 

genomics. Nucleic Acids Res. 43: D974–D981. 

Schaefer, R.J., Michno, J.-M., Jeffers, J., Hoekenga, O., Dilkes, B., Baxter, I., and 

Myers, C.L. (2018). Integrating Coexpression Networks with GWAS to Prioritize 

Causal Genes in Maize. Plant Cell 30: 2922–2942. 

Siddique, M.I., Lee, H.Y., Ro, N.Y., Han, K., Venkatesh, J., Solomon, A.M., Patil, A.S., 

Changkwian, A., Kwon, J.K., and Kang, B.C. (2019). Identifying candidate genes 

for Phytophthora capsici resistance in pepper (Capsicum annuum) via genotyping-

by-sequencing-based QTL mapping and genome-wide association study. Sci. Rep. 

9: 1–15. 

Wu, Y. et al. (2020). Multi-trait analysis for genome-wide association study of five 

psychiatric disorders. Transl. Psychiatry 10: 209. 

Yao, M. et al. (2020). GWAS and co-expression network combination uncovers 

multigenes with close linkage effects on the oleic acid content accumulation in 

Brassica napus. BMC Genomics 21: 1–12. 



 39 

 

 

 

 

 

 

 

 

CHAPTER 3: 

 

 

Integration of genome-wide association studies and gene 

coexpression networks unveils promising soybean 

resistance genes against five common fungal pathogens 

 



 40 

Chapter 3: Integration of genome-wide association studies and gene 
coexpression networks unveils promising soybean resistance genes 
against five common fungal pathogens 
 
Fabricio Almeida-Silva1* and Thiago M. Venancio1* 
 
1Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências 

e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos 

dos Goytacazes, RJ, Brazil. 

 

Type of article: Research article 

 

Situation: Accepted 

 

Journal: Scientific Reports 

 

Impact factor: 4.379; CiteScore: 7.1; Highest percentile: 93%  

 

 

*FA-S: Laboratório de Química e Função de Proteínas e Peptídeos, Centro de 

Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy 

Ribeiro. Av. Alberto Lamego 2000, P5, sala 217, Campos dos Goytacazes, RJ, 

Brazil. Email: fabricio_almeidasilva@hotmail.com  

 

*TMV: Laboratório de Química e Função de Proteínas e Peptídeos, Centro de 

Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy 

Ribeiro. Av. Alberto Lamego 2000, P5, sala 217, Campos dos Goytacazes, RJ, 

Brazil. Email: thiago.venancio@gmail.com 

mailto:fabricio_almeidasilva@hotmail.com
mailto:thiago.venancio@gmail.com


41 
 

 

ABSTRACT 

Soybean is one of the most important legume crops worldwide. However, soybean yield 

is dramatically affected by fungal diseases, leading to economic losses of billions of 

dollars yearly. Here, we integrated publicly available genome-wide association studies 

and transcriptomic data to prioritize candidate genes associated with resistance to 

Cadophora gregata, Fusarium graminearum, Fusarium virguliforme, Macrophomina 

phaseolina, and Phakopsora pachyrhizi. We identified 188, 56, 11, 8, and 3 high-

confidence candidates for resistance to F. virguliforme, F. graminearum, C. gregata, M. 

phaseolina and P. pachyrhizi, respectively. The prioritized candidate genes are highly 

conserved in the pangenome of cultivated soybeans and are heavily biased towards 

fungal species-specific defense response. The vast majority of the prioritized candidate 

resistance genes are related to plant immunity processes, such as recognition, signaling, 

oxidative stress, systemic acquired resistance, and physical defense. Based on the 

number of resistance alleles, we selected the five most resistant accessions against each 

fungal species in the soybean USDA germplasm. Interestingly, the most resistant 

accessions do not reach the maximum theoretical resistance potential. Hence, they can 

be further improved to increase resistance in breeding programs or through genetic 

engineering. Finally, the coexpression network generated here is available in a user-

friendly web application (https://soyfungigcn.venanciogroup.uenf.br/) and an R/Shiny 

package (https://github.com/almeidasilvaf/SoyFungiGCN) that serve as a public resource 

to explore soybean-pathogenic fungi interactions at the transcriptional level. 

 

Keywords: plant immunity, QTL, systems biology, population genomics. 

  

https://github.com/almeidasilvaf/SoyFungiGCN
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1 Introduction 

Soybean (Glycine max (L.) Merr.) is a major legume crop worldwide, contributing to global 

food security and economy. However, soybean yield is significantly affected by diseases, 

with an estimated economic loss of 95.8 billion dollars from 1996 to 2006 in the US 

(Bandara et al., 2020). Most of the yield loss has been linked to foliar and stem/root 

diseases, which are mostly caused by phytopathogenic fungi (Bandara et al., 2020). 

Fungal diseases, such as sudden death syndrome, Fusarium wilt, brown stem rot and 

asian rust, can impact soybean crops through leaf damage, necrosis, chlorosis, and death 

(Pandey et al., 2011; Rincker et al., 2016; Bandara et al., 2020). 

 Over the past decade, several genome-wide association studies (GWAS) have 

uncovered multiple single-nucleotide polymorphisms (SNPs) associated with resistance 

to pathogenic fungi in soybean populations (Iquira et al., 2015; Sun et al., 2020; Kandel 

et al., 2018; Zhang et al., 2015; Rincker et al., 2016; Zhang et al., 2019; Chang et al., 

2016). Nevertheless, GWAS often fail to accurately pinpoint the causative genes (Baxter, 

2020). GWAS limitations are particularly challenging for self-pollinating plants (e.g., 

soybean) because of limited recombination and strong linkage disequilibrium between 

causative and non-causative variants (Michno et al., 2020). Such limitations ultimately 

lead to large genetic intervals with several genes, hindering causative gene identification. 

Because of the exponential accumulation of genomic and transcriptomic data in public 

databases (Schwartz, 2020; Deshmukh et al., 2014; Schaefer et al., 2018; Baker et al., 

2019; Wen et al., 2018), integrative analyses to prioritize candidate genes have become 

a promising approach. This strategy consists in investigating the transcriptional patterns 

of all the genes near a significant SNP. Hence, the combination of multiple sources of 

evidence can result in richer and narrower sets of high-confidence candidate genes for 

downstream experimental validation towards biotechnological applications. 

 Here, we integrated multiple publicly available RNA-seq and GWAS datasets to 

identify high-confidence candidate genes for resistance to five phytopathogenic fungi. The 

prioritized resistance genes are species-specific and highly conserved in the pangenome 

of cultivated soybeans. The candidate resistance genes against each species are 

involved in various immunity-related processes, such as recognition, signaling, oxidative 

stress, and apoptosis. Finally, we highlighted the five most resistant accessions against 



43 
 

each fungal species in the USDA germplasm, uncovering important information for 

breeding programs and genetic engineering initiatives. Finally, the coexpression network 

resulting from this work was also made available as a publicly available web application 

(https://soyfungigcn.venanciogroup.uenf.br/) and R/Shiny package 

(https://github.com/almeidasilvaf/SoyFungiGCN). 

  

 

2 Materials and Methods 

2.1 Curation of resistance-associated SNPs 

SNPs that contribute to resistance against phytopathogenic fungi were manually curated 

from the scientific literature (Table 1; Supplementary Table S1). SNPs that were identified 

using the Gmax_a1.v1 genome were converted to their corresponding sites in the 

Gmax_a2.v1 assembly using the .vcf files for both assemblies available at Soybase 

(Brown et al., 2020). 

 

Table 1. GWAS included in this work. 

Reference Pathogen Resistance SNPs 

(Zhang et al., 2019) F. graminearum 12 

(Bao et al., 2015) F. virguliforme 8 

(Chang et al., 2016) C. gregata / F. virguliforme / P. pachyrhizi 2 /1 /2 

(Zhang et al., 2015) F. virguliforme 32 

(Swaminathan et al., 2019) F. virguliforme 27 

(Vinholes et al., 2019) M. phaseolina 4 

(Coser et al., 2017) M. phaseolina 12 

(Rincker et al., 2016) C. gregata 7 

 

 

2.2 Transcriptome data 

Gene expression estimates in transcripts per million mapped reads (TPM, Kallisto 

estimation) were retrieved from the Soybean Expression Atlas (Machado et al., 2020). 

Additional RNA-seq samples comprising soybean tissues infected with fungal pathogens 

were retrieved from a recent publication from our group (Almeida-Silva and Venancio, 

2021c). We filtered the SNP and transcriptome datasets to keep only fungal species that 

were represented by both data sources. A total of 150 RNA-seq samples from soybean 

https://github.com/almeidasilvaf/SoyFungiGCN
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tissues infected with fungal pathogens were selected (Supplementary Table S2). Finally, 

genes with median expression values lower than 5 were excluded to attenuate noise, 

resulting in an 18748 x 150 gene expression matrix for downstream analyses. 

 

2.3 Selection of guide genes 

MapMan annotations for soybean genes were retrieved from the PLAZA 3.0 Dicots 

database (Proost et al., 2015). Genes assigned to defense-related pathways (e.g., 

pathogenesis-related proteins, lignin biosynthesis, oxidative stress, and phytohormone 

regulation) were used as guides (Supplementary Table S3).  

 

2.4 Candidate gene mining and functional analyses 

Gene expression data were adjusted for confounding artifacts and quantile normalized 

with the R package BioNERO (Almeida-Silva and Venancio, 2021a). An unsigned 

coexpression network was inferred with BioNERO using Pearson’s r as correlation. All 

genes located in a 2 Mb sliding window relative to each SNP were selected as putative 

candidates, as previously proposed (Brodie et al., 2016). Candidate genes were 

prioritized using the algorithm implemented in the R package cageminer (Almeida-Silva 

and Venancio, 2021b), with an rpb threshold of 0.2 for gene significance (gene-trait 

correlation). Enrichment analyses were also performed with BioNERO, using functional 

annotations from the PLAZA 4.0 database (Van Bel et al., 2018). To rank the prioritized 

candidates, they were given scores using the formula: 

𝑆 = 𝑟𝑝𝑏𝜅 

where  

𝑟𝑝𝑏= point-biserial correlation coefficient (cageminer algorithm) 

𝜅 = 2 if the gene is a transcription factor 

𝜅 = 2 if the gene is a hub 

𝜅 = 3 if the gene is a hub and a transcription factor 

𝜅 = 1 if the gene is neither a hub nor a transcription factor 

 

 

2.5 Selection of most resistant accessions from the USDA germplasm 
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The VCF file with genotypic information for all accessions in the USDA germplasm was 

downloaded from Soybase (Brown et al., 2020). Scores 0, 1, and 2 were attributed to 

accessions with 0, 1, and 2 beneficial SNPs (effect size >0), respectively, whereas scores 

2, 1, and 0 were attributed to accessions with 0, 1, and 2 deleterious SNPs (effect size 

<0). The resistance potential of the best accessions was calculated as a ratio of the 

attributed scores to the theoretical maximum score (all beneficial SNPs and no 

deleterious SNPs). 

 

3 Results and discussion 

3.1 Data summary and genomic distribution of SNPs 

After filtering the datasets to keep only fungal species represented by both SNP and 

transcriptome information, we kept five common phytopathogenic fungi: Cadophora 

gregata, Fusarium graminearum, Fusarium virguliforme, Macrophomina phaseolina, and 

Phakopsora pachyrhizi (Figure 1A). Overall, SNPs were located in gene-rich regions of 

the genome (Figure 1B). SNPs were unevenly distributed across chromosomes, except 

for F. virguliforme (Figure 1C). Further, we found that most SNPs were located in 

intergenic regions (Figure 1D). Hence, predicting SNP effect on genes would not be 

suitable for this trait. 
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Figure 1. Data summary and genomic distribution of SNPs. A. Frequency of SNPs and RNA-seq samples 

included in this study. B. Genomic coordinates of resistance SNPs against each fungal pathogen. The outer 

track represents gene density, whereas inner tracks represent the SNP positions for each species. C. SNP 

distribution across chromosomes. Overall, there is an uneven distribution of SNPs across chromosomes. 

D. Genomic location of SNPs. Most SNPs are located in intergenic regions. 
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3.2 Candidate gene mining reveals a highly species-specific immune response 

Using defense-related genes as guides, the cageminer algorithm identified 188, 56, 11, 

8, and 3 high-confidence genes for F. virguliforme, F. graminearum, C. gregata, M. 

phaseolina, and P. pachyrhizi, respectively (Figure 2). Only three genes were shared 

between species, revealing a high specificity in plant-pathogen interactions for these 

species. The three genes are shared by F. virguliforme and F. graminearum, suggesting 

that some conservation can occur at the genus level, but not at other broader taxonomic 

levels.  

 

Figure 2. Venn diagram of prioritized candidate resistance genes against each species. The diagram 

demonstrates a high species-specific response to each pathogen, as genes are mostly not shared. Only 

three genes are shared between F. graminearum and F. virguliforme, suggesting some conservation at the 

genus level.
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 The specificity of resistance genes to particular species has been widely reported 

(Kourelis and Van Der Hoorn, 2018; Ning and Wang, 2018; Li et al., 2020; Durrant and Dong, 

2004). This phenomenon imposes a challenge for biotechnological applications, as it requires 

pyramiding many different genes to render elite cultivars resistant to different pathogens. 

However, we cannot rule out that the species-specific trend we observed results from low 

diversity in the association panels in the GWAS we analyzed. Additionally, as SNP and 

transcriptome data are not available for multiple pathogen strains, we might overlook broad-

spectrum resistance genes that confer resistance to multiple strains of the same species (Ning 

and Wang, 2018). 

 Further, we manually curated the high-confidence candidate resistance genes to predict 

the putative role of their products in plant immunity (Supplementary Table S4). Most of the 

prioritized candidates (28%) encode proteins involved in immune signaling, although it does 

not apply to all fungi species (Figure 3). Candidates also encode proteins that play a role in 

recognition, phytohormone metabolism, systemic acquired resistance, transport, transcriptional 

regulation, oxidative stress, apoptosis, physical defense, and direct function against fungi 

(Figure 3). Interestingly, 21 candidate genes lack functional description and, hence, we could 

not infer their roles in plant immunity (n=2, 4, 14, and 1 for C. gregata, F. virguliforme, and P. 

pachyrhizi, respectively). Nevertheless, as they were identified as high-confidence candidate 

genes, we hypothesize that they encode defense-related proteins. We also developed a 

scheme that was used to rank high-confidence candidate genes, which can be used to prioritize 

candidates for experimental validation in future studies (Table 2).   
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Figure 3. Prioritized candidate resistance genes and their putative role in plant immunity. Numbers in circles 

represent absolute frequencies of resistance genes against C. gregata (blue), F. graminearum (red), F. 

virguliforme (green), M. phaseolina (purple), and P pachyrhizi (turquoise). PRR, pattern recognition receptor. 

PAMP, pathogen-associated molecular pattern. MAPKKK, mitogen-activated protein kinase kinase kinase. 

MAPKK, mitogen-activated protein kinase kinase. MAPK, mitogen-activated protein kinase. SAR, systemic 

acquired resistance. RBOH, respiratory burst oxidase homolog. ROS, reactive oxygen species. RLK, receptor-like 

kinase. PR, pathogenesis-related. Figure designed with Biorender (biorender.com).
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Table 2. Top 10 candidate resistance genes against each fungal species and their putative roles in plant immunity. The predicted function for 
each gene was manually curated from the description of the best ortholog in Arabidopsis thaliana, using functional annotations from 
Soybase and TAIR. 

 

Gene Predicted function Resistance to Role 

Glyma.16G170100 Cell wall biogenesis-related extensin 3 C. gregata Physical barrier 

Glyma.02G026700 Transcriptional repressor SIN3 C. gregata Transcriptional regulation 

Glyma.02G026900 Galacturonosyltransferase C. gregata Physical barrier 

Glyma.02G029300 SAM domain-containing C. gregata Unknown 

Glyma.16G155100 Aquaporin C. gregata Oxidative stress 

Glyma.17G217000 Class V chitinase C. gregata Direct function 

Glyma.17G213600 Calcium-binding EF hand C. gregata Signaling 

Glyma.17G231800 Clathrin adaptor EPSIN1 C. gregata Recognition 

Glyma.02G047000 Thiosulfate sulfurtransferase/rhodanese C. gregata Oxidative stress 

Glyma.16G150500 Unknown C. gregata Unknown 

Glyma.17G087500 SOUL heme-binding protein F. graminearum Oxidative stress 

Glyma.06G121300 GRAS transcription factor F. graminearum Transcriptional regulation 

Glyma.05G070300 Tobamovirus multiplication 2A F. graminearum Recognition 

Glyma.04G013500 BURP domain-containing protein F. graminearum Physical barrier 

Glyma.06G105000 ERF/AP2 transcription factor F. graminearum Transcriptional regulation 

Glyma.05G062400 2OG-Fe(II) oxygenase F. graminearum Oxidative stress 

Glyma.05G063600 ERF/AP2 transcription factor F. graminearum Transcriptional regulation 

Glyma.05G115700 RING domain ubiquitin E3 ligase F. graminearum Signaling 

Glyma.17G116100 MAPK signaling-related protein F. graminearum Signaling 

Glyma.05G103600 Peroxidase F. graminearum Oxidative stress 

Glyma.13G081000 Nodulin-like amino acid transporter F. virguliforme Transport 

Glyma.01G225600 Unknown F. virguliforme Unknown 

Glyma.02G210500 bHLH transcription factor F. virguliforme Transcriptional regulation 

Glyma.01G162500 BIG1 protein F. virguliforme Apoptosis 

Glyma.17G061400 Peroxidase F. virguliforme Oxidative stress 

Glyma.19G010100 HD-Zip transcription factor F. virguliforme Transcriptional regulation 

Glyma.18G276800 Amino acid transporter F. virguliforme Oxidative stress 

Glyma.05G209900 PLAC8 family protein F. virguliforme Apoptosis 

Glyma.14G025100 Inositol-1,4,5-trisphosphate 5-phosphatase F. virguliforme Signaling 

Glyma.19G117800 Unknown F. virguliforme Unknown 

Glyma.20G203900 Type I serine/threonine protein phosphatase M. phaseolina Signaling 
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Glyma.08G316500 Calmodulin-dependent protein kinase M. phaseolina Signaling 

Glyma.06G187200 R-gene-mediated resistance, lipase M. phaseolina SAR 

Glyma.09G218600 Cytochrome P450, family 707, subfamily A M. phaseolina Phytohormone metabolism 

Glyma.09G216800 Pectin acetylesterase M. phaseolina Signaling 

Glyma.20G216600 Dof-type transcription factor M. phaseolina Transcriptional regulation 

Glyma.08G332800 Calcineurin B-like calcium sensor M. phaseolina Signaling 

Glyma.18G301700 Leucine-rich repeat receptor kinase (LRR-RK) M. phaseolina Recognition 

Glyma.15G125900 Magnesium transporter CorA-like P. pachyrhizi Transport 

Glyma.18G286900 Unknown P. pachyrhizi Unknown 

Glyma.15G123900 CBF1 interacting co-repressor CIR P. pachyrhizi Transcriptional regulation 
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3.3 Pangenome presence/absence variation analysis demonstrates that most prioritized 

genes are core genes 

We analyzed PAV patterns for our prioritized candidate genes in the recently published 

pangenome of cultivated soybeans to unveil which soybean genotypes contain prioritized 

candidate genes and explore gene presence/absence variation patterns across genomes 

(Torkamaneh et al., 2021). We found that most candidates are present in all 204 

accessions (Supplementary Figure 1A). This trend is not surprising, as the gene content 

in this pangenome is highly conserved, with ~91% of the genes being shared by >99% of 

the genomes. Although the variable genome is enriched in genes associated with 

defense, signaling, and plant development, this trend was not found in our gene set.  

Further, we investigated if gene PAV patterns could be explained by the 

geographical origins of the accessions (Supplementary Figure 1B). Strikingly, we 

observed no clustering by geographical origin, suggesting that gene PAV is not affected 

by population structure. As this pangenome is comprised of improved soybean 

accessions (Torkamaneh et al., 2021), the lack of population structure effect can be due 

to breeding programs targeting optimal adaptation to different environmental conditions 

(e.g., latitude and climate), even if they are in the same country.  

 

3.4 Screening of the USDA germplasm reveals a room for genetic improvement 

We inspected the USDA germplasm to find the top 5 most resistant genotypes against 

each fungal pathogen (see Materials and Methods for details). Strikingly, the most 

resistant genotypes do not contain all resistance alleles, revealing that, theoretically, they 

could be further improved to increase resistance (Table 3). All resistance-associated 

SNPs against P. pachyrhizi are present in some accessions, but this is because only two 

SNPs have been reported for this species. Additionally, none of the reported SNPs for F. 

graminearum have been identified in the SoySNP50k collection. Hence, we could not 

predict the most resistant accessions to this fungal species in the USDA germplasm. 

 Although some individual genes can confer full race-specific resistance to some 

pathogens, their durability in the field is often short because of pathogen evolution (Ning 

and Wang, 2018). Thus, pyramiding quantitative trait loci (QTL) that confer partial 

resistance has been proposed a strategy to  confer long-term resistance (Li et al., 2020). 
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To accomplish this, the most resistant genotypes identified here can be targets of allele 

pyramiding in breeding programs using marker-assisted selection. Alternatively, these 

genotypes might have their genomes edited with CRISPR/Cas systems to introduce 

beneficial alleles or remove deleterious alleles, ultimately boosting resistance.  

 

Table 3. Top 5 most resistant soybean accessions against each fungal pathogen. Overall, the best 
genotypes do not reach the maximum potential. An exception is observed for P. pachyrhizi-resistant 
genotypes, but this is likely due to the small number of resistance SNPs. None of the resistance SNPs for 
F. graminearum have been identified in the USDA SoySNP50k compendium and, hence, we could not 
predict resistance potential against this species. 

 

Accession Score Potential Species 

PI594466 102 0.73 C. gregata 

PI578477A 100 0.71 C. gregata 

PI437571 100 0.71 C. gregata 

PI567520A 100 0.71 C. gregata 

PI274507 100 0.71 C. gregata 

PI339871C 82 0.60 F. virguliforme 

PI378694 80 0.59 F. virguliforme 

PI407145 80 0.59 F. virguliforme 

PI424107A 80 0.59 F. virguliforme 

PI479753A 80 0.59 F. virguliforme 

PI594760B 24 0.75 M. phaseolina 

PI479752 24 0.75 M. phaseolina 

PI603706A 24 0.75 M. phaseolina 

PI603531A 24 0.75 M. phaseolina 

PI603412A 24 0.75 M. phaseolina 

PI603547 4 1 P. pachyrhizi 

PI639559A 4 1 P. pachyrhizi 

PI639559B 4 1 P. pachyrhizi 

PI326582A 4 1 P. pachyrhizi 

PI407057 4 1 P. pachyrhizi 

 

 

3.5 Development of a user-friendly web application for network exploration 

To facilitate network exploration and data reuse, we developed a user-friendly web 

application named SoyFungiGCN (https://soyfungigcn.venanciogroup.uenf.br/). Users 

can input a soybean gene of interest (Wm82.a2.v1 assembly) and visualize the gene’s 
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module, scaled intramodular degree, and hub status (Figure 4A). Additionally, users can 

explore enriched GO terms, Mapman bins and/or Interpro domains associated with the 

input gene’s module (Figure 4A). Users can also visualize a network plot with the input 

gene and its coexpression neighbors (Figure 4B). This resource can be particularly useful 

for researchers studying soybean response to other fungal species, as they can check if 

their genes of interest are located in defense-related coexpression modules. Also, 

researchers studying other species can verify if the soybean ortholog of their genes of 

interest is located in a defense-related module. The application is also available as an R 

package named SoyFungiGCN (https://github.com/almeidasilvaf/SoyFungiGCN). This 

package lets users run the application locally as a Shiny app, ensuring the application will 

always be available, even in case of server downtime.  

 

https://github.com/almeidasilvaf/SoyFungiGCN
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Figure 4. Functionalities in the SoyFungiGCN web application. A. Screenshot of the page users see when 

they access the application. In the sidebar, users can specify the ID of a gene of interest (Wm82.a2.v1 

assembly). For each gene, users can see the gene’s module (orange box), scaled degree (red box), hub 

gene status (green box), and an interactive table with enrichment results for MapMan bins, Interpro domains 

and Gene Ontology terms associated the gene’s module. P-values from enrichment results are adjusted 

for multiple testing with Benjamini-Hochberg correction. B. Network visualization plot. Users can optionally 

visualize the input gene and its position in the module by clicking the plus (+) icon in the “Network 

visualization” tab below the enrichment table. As the plot can take a few seconds to render (~2-5 seconds), 

it is hidden by default.
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4 Conclusions 

By integrating publicly available GWAS and RNA-seq data, we found promising candidate 

genes in soybean associated with resistance to five common phytopathogenic fungi, namely 

C. gregata, F. graminearum, F. virguliforme, M. phaseolina, and P. pachyrhizi. The prioritized 

candidates encode proteins that play a role immunity-related processes such as in recognition, 

signaling, transcriptional regulation, oxidative stress, and physical defense. We have also found 

the top 5 most resistant soybean accessions against each fungal species and hypothesize that 

they can be further genetically improved in breeding programs with marker-assisted selection 

or through genome editing. The coexpression network generated here was also made available 

in a web resource and R package to help in future studies on soybean-pathogenic fungi 

interactions. 

 

Data availability 

All data and code used in this study are available in our GitHub repository 

(https://github.com/almeidasilvaf/SoyFungi_GWAS_GCN) to ensure full reproducibility.  
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Supplementary Figures 

 

 
 
Supplementary Figure 1. Presence/absence variation (PAV) of prioritized candidate genes in the 

soybean pangenome. A. Relative frequency of accessions containing each candidate gene. Most 

candidates are present in all accessions. Candidate genes with lower frequency in the pangenome 
are labeled. B. PAV per accessions and their geographic distribution. The patterns of gene PAV cannot 
be explained by the geographic origins of the accessions. 
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ABSTRACT 

Soybean is one of the most important legume crops worldwide. However, soybean pests 

are responsible for severe economic losses because of reduced crop yield. Here, we 

integrated publicly available genome-wide association studies and transcriptomic data to 

prioritize candidate resistance genes against the insects Aphis glycines and Spodoptera 

litura, and the nematode Heterodera glycines. We identified 171, 7, and 228 high-

confidence candidate resistance genes against A. glycines, S. litura, and H. glycines, 

respectively. We found some overlap of candidate genes between insect species, but not 

between insects and H. glycines. Although 15% of the prioritized candidate genes encode 

proteins of unknown function, the vast majority of the candidates are related to plant 

immunity processes, such as transcriptional regulation, signaling, oxidative stress, 

recognition, and physical defense. Based on the number of resistance alleles, we 

selected the ten most promising accessions against each pest species in the soybean 

USDA germplasm. The most resistant accessions do not reach the maximum theoretical 

resistance potential, indicating that they can be further improved to increase resistance 

in breeding programs or through genetic engineering. Finally, the coexpression networks 

generated here are available in a user-friendly web application 

(https://soypestgcn.venanciogroup.uenf.br/) and an R/Shiny package 

(https://github.com/almeidasilvaf/SoyPestGCN) that serve as a public resource to explore 

soybean-pest interactions at the transcriptional level. 

 

Keywords: plant immunity, QTL, gene discovery, population genomics. 

  

https://soypestgcn.venanciogroup.uenf.br/
https://github.com/almeidasilvaf/SoyPestGCN
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1 Introduction 

Soybean (Glycine max (L.) Merr.) is the world’s main legume crop, with a primary impact 

in human and animal nutrition, and in industrial applications. However, soybean fields are 

significantly affected by pests (insects and nematodes) that lead to dramatic yield 

losses. The major pests in soybean fields are the soybean aphid (Aphis glycines 

Matsumura) and the soybean cyst nematode (Heterodera glycines Ichinohe), which are 

responsible for annual losses of US$4 billion and US$4.5 billion in the US, respectively 

(Bandara et al., 2020; Koenning and Wrather, 2010). In Brazil, the world’s leading 

soybean producer, insect pests reduce yield by 7.7%, which corresponds to an economic 

loss of US$ 17.7 billion (Oliveira et al., 2014). 

 Over the past few years, many genome-wide associations studies (GWAS) have 

been performed to identify single-nucleotide polymorphisms (SNPs) associated with 

soybean resistance to insect and nematode pests (Liu et al., 2019; Hanson et al., 2018; 

Zhao et al., 2017; Bao et al., 2014; Natukunda et al., 2019). However, as GWAS typically 

cannot accurately pinpoint causative genes, multi-omics data integration has helped 

predict high-confidence candidate genes associated with traits of interest (Baxter, 2020; 

Michno et al., 2020). Recently, we identified high-confidence candidate genes against 

fungal diseases using cageminer, a graph-based algorithm recently developed by our 

group to integrate GWAS and transcriptomic data to prioritize candidate genes (Almeida-

Silva and Venancio, 2021b, 2021c). Thus, we hypothesize that our algorithm can also 

reveal high-confidence candidate genes that can be used to engineer soybean lines with 

increased resistance to pests. 

 Here, we integrated multiple publicly available RNA-seq and GWAS datasets to 

identify high-confidence candidate genes associated with resistance to pests. We found 

a high overlap of resistance genes between insects, but not between insects and 

nematodes, suggesting that these classes trigger different defense responses. The 

candidate resistance genes against each species are involved in several immunity-related 

processes, such as transcriptional regulation, signaling, oxidative stress, recognition, and 

phytohormone metabolism. Strikingly, 15% of the candidates encode proteins of unknown 

function, revealing a hidden catalog of potential resistance genes. Finally, we highlighted 
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the ten most resistant accessions against each pest species in the USDA germplasm, 

uncovering important information for breeding programs and genetic engineering 

initiatives. The coexpression networks resulting from this work were also made available 

as a web application (https://soypestgcn.venanciogroup.uenf.br/) and R/Shiny package 

(https://github.com/almeidasilvaf/SoyPestGCN). 

  

 

2 Materials and Methods 

2.1 Curation of resistance-associated SNPs and pan-genome data 

SNPs with significant association to resistance against soybean pests were manually 

curated from published GWAS data (Table 1; Supplementary Table S1). SNPs that were 

present in the SoySNP50k database were identified with their standard nomenclature, 

and the VCF file for the SoySNP50k was downloaded from Soybase (Brown et al., 2020). 

Additionally, a matrix of gene presence/absence variation (PAV) in the pan-genome of 

cultivated soybeans (n = 204 genomes from 24 countries and 5 continents) (Torkamaneh 

et al., 2021) was also used. 

 

Table 1. GWAS included in this work. N, number of significant resistance-related SNPs in each study. 
 

Reference Organism N 

(Liu et al., 2019) H. glycines 11 

(Liu et al., 2016) S. litura 6 

(Zhang et al., 2017) H. glycines 13 

(Natukunda et al., 2019) A. glycines 5 

(Chang et al., 2016) H. glycines 25 

(Vuong et al., 2015) H. glycines 16 

(Zhao et al., 2017) H. glycines 13 

(Chang and Hartman, 2017) A. glycines 1 

(Tran et al., 2019) H. glycines 12 

(Bao et al., 2014) H. glycines 6 

(Hanson et al., 2018) A. glycines 45 

 

 

https://soypestgcn.venanciogroup.uenf.br/
https://github.com/almeidasilvaf/SoyPestGCN
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2.2 Prediction of variant effects on genes 

Variant effect prediction was performed with the function predictCoding() from the R 

package VariantAnnotation (Obenchain et al., 2014). Genome sequences and transcript 

coordinates were downloaded from PLAZA 4.0 (Van Bel et al., 2018). Reference and 

alternate alleles were manually extracted from each GWAS publication. Variants with no 

information on reference and alternate alleles in the original publication were discarded 

from this analysis. 

 

2.3 Transcriptome data and selection of guide genes 

Gene expression estimates in transcripts per million mapped reads (TPM, Kallisto 

estimation) were retrieved from the Soybean Expression Atlas (Machado et al., 2020). 

Additional RNA-seq samples comprising soybean tissues infested with pests were 

retrieved from a recent publication from our group (Almeida-Silva and Venancio, 2022). 

We filtered the GWAS and transcriptome datasets to keep only insect and nematode 

species that were represented by both data sources. We selected a total of 102 and 36 

RNA-seq samples from soybean tissues infested with insects and nematodes, 

respectively (Supplementary Table S2). Finally, genes with median expression values 

lower than 5 were excluded to attenuate noise, resulting in a 15684 x 102 gene expression 

matrix for insects, and a 10240 x 36 matrix for nematodes. Guide genes were obtained 

from the Supplementary Data in (Almeida-Silva and Venancio, 2021c). 

 

2.4 Candidate gene mining and functional analyses 

Gene expression data were adjusted for confounding artifacts and quantile normalized 

with the R package BioNERO (Almeida-Silva and Venancio, 2021a). An unsigned 

coexpression network was inferred with BioNERO using Pearson’s r as correlation. 

Candidate genes were identified and prioritized using the R package cageminer (Almeida-

Silva and Venancio, 2021b) with default parameters. Module enrichment analyses were 

performed with BioNERO, using functional annotations from the PLAZA 4.0 database 

(Van Bel et al., 2018). Finally, prioritized candidates were given scores and ranks using 

the function score_genes() from cageminer. 
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2.5 Selection of most resistant accessions from the USDA germplasm 

The VCF file with genotypic information for all accessions in the USDA germplasm was 

downloaded from Soybase (Brown et al., 2020). For each locus i, scores Si 0, 1, or 2 were 

given based on the number of resistance-related SNPs. Total resistance scores for each 

accession were calculated as the sum of scores Si for all n loci as follows: 

𝑆𝑡𝑜𝑡𝑎𝑙 = ∑𝑆𝑖

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 = {0,1,2} 

Total resistance scores were ranked from highest to lowest, and ranks were used 

to select the most resistant accessions. The resistance potential of the best accessions 

was calculated as a ratio of the attributed scores to the theoretical maximum score (2n, 

which corresponds to all loci having scores 2). 

 

3 Results and discussion 

3.1 Data summary and genomic distribution of SNPs 

After removing pest species that were not represented by both soybean RNA-seq and 

GWAS, our list of target species included the insects A. glycines (soybean aphid) and S. 

litura (armyworm caterpillar), and the nematode H. glycines (soybean cyst nematode) 

(Figure 1A). SNPs associated with resistance to all pest species were located in gene-

rich regions of the soybean genome (Figure 1B), and their distributions were biased 

towards particular chromosomes (Figure 1C). Resistance SNPs against A. glycines were 

mostly located on chromosome 13, and resistance SNPs against H. glycines were mostly 

located on chromosomes 18, 8 and 7 (Figure 1C). Resistance SNPs against S. litura only 

occurred on chromosomes 12, 7, 6 and 5, but it is important to mention the small number 

of resistance SNPs against this species as compared to the other ones. 

 Interestingly, although most resistance SNPs against all species were located in 

intergenic regions, a considerable fraction of them was located in exons, except for S. 

litura (Figure 1D). This is a dramatic difference from what we observed in our previous 

study on fungi resistance-related genes, where almost all SNPs were located in intergenic 
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regions (Almeida-Silva and Venancio, 2021c). Hence, we predicted SNP effects on 

coding sequences to better understand the functional consequences of these SNPs. 

From all resistance SNPs against A. glycines in coding regions, 31% (n=5) led to 

nonsynonymous substitutions, while 69% (n=11) led to synonymous substitutions 

(Supplementary Table S3). This unexpected finding suggests that most SNPs in coding 

regions increase resistance to this pest species despite not altering the amino acid 

residue. However, from all resistance SNPs against H. glycines in coding regions, 

nonsynonymous substitutions prevailed as expected (63%, n=10), followed by 

synonymous (31%, n=5) and nonsense substitutions (6%, n=1). 

Additionally, we explored the distribution of SNPs in introns to understand their 

functional impact. SNPs in splice sites (i.e., ±2 nucleotides relative to the exon-intron 

junction) have been shown to influence exon configuration and alternative splicing 

(Woolfe et al., 2010). None of the SNPs in introns were located in splice sites, indicating 

that they do not affect splicing patterns directly. This finding, together with the higher 

abundance of A. glycines resistance-related SNPs leading to synonymous substitutions, 

suggest that some SNPs contribute to resistance in non-canonical ways. A possible 

mechanistic explanation lies on recent advances in chromosome conformation capture 

(3C)-based methods (Wang et al., 2021). We hypothesize that these SNPs contribute to 

increased resistance through long-range interactions between genomic elements that are 

linked to transcriptional regulation, such as interactions in chromatin loops.  
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Figure 1. Data summary and genomic distribution of SNPs. A. Frequency of SNPs and RNA-seq samples 

included in this study. B. Genomic coordinates of resistance SNPs against each pest species. The outer 

track represents gene density, whereas inner tracks represent the SNP positions for each species. C. SNP 

distribution across chromosomes. Overall, there is an uneven distribution of SNPs across chromosomes. 

D. Genomic location of SNPs. Most SNPs are located in intergenic regions. 
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3.2 High candidate gene overlap between insects, but not between insects and 

nematodes 

Using defense-related genes as guides, we identified 171, 7, and 228 high-confidence 

genes against A. glycines, S. litura, and H. glycines, respectively (Figure 2A). 

Interestingly, 57% (4/7) of the candidates against S. litura were also candidates against 

A. glycines. However, none of the candidate resistance genes against insects were 

shared with H. glycines, revealing a high intraclass overlap (i.e., among insects), but no 

interclass overlap (i.e., among insects and nematodes). The shared genes are 

Glyma.07G034400, Glyma.12G059900, Glyma.07G033100, Glyma.07G036400, whose 

protein products are associated with phytohormone metabolism (KMD protein, Kelch 

repeat), transport (glucose and ATP transporters), and signaling 

(phospholipid:diacylglycerol acyltransferase), respectively. We also analyzed the overlap 

of pest resistance-related candidates with fungi resistance-related candidates from 

(Almeida-Silva and Venancio, 2021c) and found that a small number (n ≤5) of candidates 

against H. glycines and A. glycines are shared with Fusarium species (Figure 2B). 

The observed overlap of candidate gene sets for different insect species is 

desirable, because it suggests that shared candidates can be used in biotechnological 

applications to equip soybean accessions with broad-spectrum resistance (BSR) against 

insects. In our recent study on candidate resistance genes against fungi, we reported a 

highly species-specific response (Almeida-Silva and Venancio, 2021c). This is an 

apparent trend for filamentous pathogens, as it has been reported in other studies (Ning 

and Wang, 2018; Kourelis and Van Der Hoorn, 2018). For insects, however, BSR to 

insects has been reported more often, and it can be achieved with genes associated with 

the synthesis of volatile organic compounds and secondary metabolites, for instance 

(Dixit et al., 2013; Vosman et al., 2018). Altogether, these findings suggest that achieving 

BSR against insects is easier than for filamentous pathogens, and it can be a feasible 

approach to control pests in soybean fields. This hypothesis can be tested in the future, 

when more data are available. 
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Figure 2. Cross-species overlap patterns across candidate gene sets. A. Euler diagram of prioritized 

candidate resistance genes against each pest species. Most candidate genes against S. litura are shared 

with A. glycines, suggesting a core defense against insects. However, insect resistance-related genes are 

not shared with nematode resistance-related genes. This suggests that insects and nematodes trigger 

different players of plant immunity. B. Upset plot with overlaps of candidate gene sets across fungal and 

pest species. A small number of candidate resistance genes against pests are shared with Fusarium sp. 

resistance-related gene sets. Candidate resistance genes against fungi were retrieved from (Almeida-Silva 

and Venancio, 2021c). 

 

 

3.3 Signaling, oxidative stress and transcriptional regulation shape soybean resistance to 

pests 

We manually curated the high-confidence candidate resistance genes to predict the 

putative role of their products in plant immunity (Supplementary Table S4). Most of the 

prioritized candidates encode proteins involved in immune signaling (23%), oxidative 
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stress (21%), and transcriptional regulation (16%) (Figure 3). Candidates also encode 

proteins that play a role in transport, translational regulation, physical defense, 

phytohormone and secondary metabolism, apoptosis, recognition, and direct function 

against pests (Figure 3).  

Interestingly, 55 (15%) candidate genes lack functional description and, hence, we 

could not infer their roles in resistance (n=28, 25, and 2 for A. glycines, H. glycines, and 

S. litura, respectively). Nevertheless, as they were identified as high-confidence 

candidate genes, we hypothesize that they encode defense-related proteins. This finding 

demonstrates that our algorithm can also serve as a network-based approach to predict 

functions of unannotated genes, similarly to previous approaches (Almeida-Silva et al., 

2020; Depuydt and Vandepoele, 2021). Genes encoding proteins of unknown function 

were in the top 4 most abundant categories for all species, revealing a hidden, rich source 

of targets for biotechnological applications that would not have been identified if traditional 

SNP-to-gene mapping approaches were used. 

We also developed a scheme that was used to rank high-confidence candidate 

genes (Table 2). As there are several candidate resistance genes against A. glycines and 

H. glycines, ranking candidates can help prioritize genes for validation purposes. Here, 

we suggest using the top 10 candidate resistance genes against each pathogen for 

experimental validation in future studies. Experimental tests with transgenic or edited 

soybeans using our set of target genes will likely reveal the most suitable candidates to 

develop soybean lines with increased resistance to each pest. 
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Figure 3. Prioritized candidate resistance genes and their putative role in plant immunity. Numbers in circles 

represent absolute frequencies of resistance genes against Aphis glycines (gold), Heterodera glycines 

(gray), and Spodoptera litura (green). PRR, pattern recognition receptor. PAMP, pathogen-associated 

molecular pattern. MAPKKK, mitogen-activated protein kinase kinase kinase. MAPKK, mitogen-activated 

protein kinase kinase. MAPK, mitogen-activated protein kinase. SAR, systemic acquired resistance. RBOH, 

respiratory burst oxidase homolog. ROS, reactive oxygen species. RLK, receptor-like kinase. Figure 

designed with Biorender (biorender.com). 
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Table 2. Top 10 candidate resistance genes against each pest species and their putative roles in plant immunity. The predicted function for 
each gene was manually curated from the description of the best ortholog in Arabidopsis thaliana, using functional annotations from Soybase 

and TAIR. 

 

Gene Predicted function Resistance to Role 

Glyma.07G021800 Chaperone, DnaJ domain A. glycines Translational regulation 

Glyma.19G187200 UDP-glycosyltransferase A. glycines Signaling 

Glyma.10G002200 Calmodulin A. glycines Signaling 

Glyma.11G194500 Acyl-CoA synthetase A. glycines Phytohormone metabolism 

Glyma.01G210200 Autophagy protein A. glycines Apoptosis 

Glyma.04G085500 Lysophospholipase A. glycines Signaling 

Glyma.01G238800 Sugar transporter A. glycines Transport 

Glyma.19G018600 AAA-ATPase A. glycines Oxidative stress 

Glyma.13G326800 Galactose oxidase A. glycines Physical barrier 

Glyma.04G085600 Unknown orphan gene A. glycines Unknown 

Glyma.06G195300 Protein of unknown function S. litura Unknown 

Glyma.07G033100 ATP transporter S. litura Transport 

Glyma.07G034400 KMD protein - Kelch repeat S. litura Phytohormone metabolism 

Glyma.06G175400 RNA-binding protein S. litura Transcriptional regulation 

Glyma.05G194700 Protein of unknown function S. litura Unknown 

Glyma.07G036400 Phospholipid:diacylglycerol acyltransferase S. litura Signaling 

Glyma.12G059900 Glucose transporter S. litura Transport 

Glyma.18G077500 Y-box transcription factor H. glycines Transcriptional regulation 

Glyma.19G122700 MYB transcription factor H. glycines Transcriptional regulation 

Glyma.13G169900 HD-Zip transcription factor H. glycines Transcriptional regulation 

Glyma.09G245300 MYB transcription factor H. glycines Transcriptional regulation 

Glyma.01G179900 Homeobox transcription factor H. glycines Transcriptional regulation 

Glyma.16G053900 TCP transcription factor H. glycines Transcriptional regulation 

Glyma.01G207300 HD-Zip transcription factor H. glycines Transcriptional regulation 
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3.4 Pangenome presence/absence variation analysis demonstrates that most prioritized genes 

are core genes 

We analyzed PAV patterns for our prioritized candidate genes in the recently published 

pangenome of cultivated soybeans to unveil which soybean genotypes contain prioritized 

candidate genes and explore gene presence/absence variation patterns across genomes 

(Torkamaneh et al., 2021). We found that most candidates (98%) are present in all 204 

accessions (Supplementary Figure 1A), similarly to what we found for fungi resistance-related 

genes (Almeida-Silva and Venancio, 2021c). This unsurprising trend is likely due to the high 

level of gene content conservation in this pangenome, which has 91% of the genes shared by 

>99% of the genomes.  

Further, we investigated if gene PAV patterns could be explained by the geographical 

origins of the accessions (Supplementary Figure 1B). As we observed in our previous study 

(Almeida-Silva and Venancio, 2021c), PAV patterns did not cluster by geographical origin, 

suggesting that gene PAV is not affected by population structure. As this pangenome comprises 

improved soybean accessions (Torkamaneh et al., 2021), the lack of population structure effect 

can be due to breeding programs targeting optimal adaptation to different environmental 

conditions (e.g., latitude and climate), even if they are in the same country.  

 

3.5 Screening of the USDA germplasm reveals a room for genetic improvement 

We inspected the USDA germplasm to find the top 10 most resistant genotypes against each 

pest species (see Materials and Methods for details). Strikingly, the most resistant genotypes 

do not contain all resistance alleles, revealing that, theoretically, they could be further improved 

to increase resistance (Table 3). None of the reported SNPs for resistance against S. litura 

have been identified in the SoySNP50k collection. Hence, we could not predict the most 

resistant accessions to this pest species in the USDA germplasm. 

Our findings are in line with what we observed for resistance to fungi in the USDA 

germplasm (Almeida-Silva and Venancio, 2021c). Importantly, insect resistance potentials 

were lower than fungi resistance potentials (Wilcoxon rank-sum test, P = 7.7e-04), suggesting 

that pest resistance in could be further improved. A feasible approach to increase pest 

resistance involves pyramiding quantitative trait loci (QTL) that confer partial resistance to each 
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pest (Li et al., 2020). To accomplish this, the most resistant genotypes identified here can be 

used in breeding programs using marker-assisted selection or inspire CRISPR/Cas editing 

strategies to introduce beneficial alleles or remove deleterious alleles, leading to increased 

resistance. However, as we are using independently published data, our model does not 

account for epistasis and different effect sizes for each variant. Hence, there might be 

accessions with a smaller number of SNPs with large effects that are more resistant than 

accessions with a greater number of SNPs with moderate effects. 

 

Table 3. Top 10 most resistant soybean accessions against each pest species. Overall, the best genotypes do 
not reach the maximum potential. None of the resistance SNPs for S. litura have been identified in the USDA 
SoySNP50k compendium and, hence, we could not predict resistance potential against this species. 

 

Accession Score Potential Species 

PI468399A 57 0.582 A. glycines 

PI532451 57 0.582 A. glycines 

PI468916 56 0.571 A. glycines 

PI468918 56 0.571 A. glycines 

PI479750 56 0.571 A. glycines 

PI479752 56 0.571 A. glycines 

PI468400B 55 0.561 A. glycines 

PI468399B 54 0.551 A. glycines 

PI507793 54 0.551 A. glycines 

PI479749 54 0.551 A. glycines 

PI556949 66 0.673 H. glycines 

PI84751 66 0.673 H. glycines 

Peking 66 0.673 H. glycines 

PI438497 66 0.673 H. glycines 

PI548402 66 0.673 H. glycines 

PI438342 64 0.653 H. glycines 

PI549047 64 0.653 H. glycines 

PI597461C 64 0.653 H. glycines 

PI404166 64 0.653 H. glycines 

PI437679 64 0.653 H. glycines 

 

 

3.6 Development of a user-friendly web application for network exploration 

To facilitate network exploration and data reuse, we developed a user-friendly web application 

named SoyPestGCN (https://soypestgcn.venanciogroup.uenf.br/). Users can choose either the 

https://soypestgcn.venanciogroup.uenf.br/
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insect or the nematode GCN and input a soybean gene of interest (Wm82.a2.v1 assembly) to 

visualize the gene’s module, scaled intramodular degree, and hub status (Figure 4A). 

Additionally, users can explore enriched GO terms, Mapman bins and/or Interpro domains 

associated with the input gene’s module (Figure 4). This resource can be particularly useful for 

researchers studying soybean response to other pest species, as they can check if their genes 

of interest are located in defense-related coexpression modules. Also, researchers studying 

other species can verify if the soybean ortholog of their genes of interest is located in a defense-

related module. The application is also available as an R package named SoyPestGCN 

(https://github.com/almeidasilvaf/SoyPestGCN). This package lets users run the application 

locally as a Shiny app, ensuring the application will always be available, even in case of server 

downtime.  

 

 
 

Figure 4. Functionalities in the SoyPestGCN web application. Screenshot of the page users see when they access 

the application. In the sidebar, users can specify either the insect GCN or the nematode GCN followed by the ID 

of a gene of interest (Wm82.a2.v1 assembly). For each gene, users can see the gene’s module (orange box), 

scaled degree (red box), hub gene status (green box), and an interactive table with enrichment results for MapMan 

bins, Interpro domains and Gene Ontology terms associated the gene’s module. P-values from enrichment results 

are adjusted for multiple testing with Benjamini-Hochberg correction.  

 

https://github.com/almeidasilvaf/SoyPestGCN
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4 Conclusions 

By integrating publicly available GWAS and RNA-seq data, we found promising candidate 

genes in soybean associated with resistance to three pest species, namely A. glycines, S. litura, 

and H. glycines. The prioritized candidates encode proteins that play a role immunity-related 

processes such as in recognition, signaling, transcriptional regulation, oxidative stress, 

specialized metabolism, and physical defense. We have also found the top 10 most resistant 

soybean accessions against each pest species and hypothesize that they can be used in 

soybean improvement programs, either via breeding with marker-assisted selection or through 

genome editing. The coexpression network generated here was also made available in a web 

resource and R package to help in future studies on soybean-pest interactions. 

 

Data availability 

All data and code used in this study are available in our GitHub repository 

(https://github.com/almeidasilvaf/SoyPestGCN_paper) to ensure full reproducibility.  
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Supplementary Figures 

 
 

Figure 1. Presence/absence variation (PAV) of prioritized candidate genes in the soybean pangenome. A. 

Relative frequency of accessions containing each candidate gene. Most candidates are present in all 

accessions. Candidate genes with lower frequency in the pangenome are labeled. B. PAV per accessions 

and their geographic distribution. The patterns of gene PAV cannot be explained by the geographic origins 

of the accessions. 
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ABSTRACT 

Plant pathogenesis-related (PR) proteins are a large group of proteins, classified in 17 

families, that are induced by pathological conditions. Here, we characterized the 

soybean PR-1 (GmPR-1) gene repertoire at the sequence, structural and expression 

levels. We found 24 GmPR-1 genes, clustered in two phylogenetic groups. GmPR-1 

genes are under strong purifying selection, particularly those that emerged by tandem 

duplications. GmPR-1 promoter regions are abundant in cis-regulatory elements 

associated with major stress-related transcription factor families, namely WRKY, ERF, 

HD-Zip, C2H2, NAC, and GATA. We observed that 23 GmPR-1 genes are induced by 

stress conditions or exclusively expressed upon stress. We explored 1972 

transcriptome samples, including 26 stress conditions, revealing that most GmPR-1 

genes are differentially expressed in a plethora of biotic and abiotic stresses. Our 

findings highlight stress-responsive GmPR-1 genes with potential biotechnological 

applications, such as the development of transgenic lines with increased resistance to 

biotic and abiotic stresses. 
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Conclusões Gerais 
 
 
Neste trabalho, desenvolvemos um pacote R chamado BioNERO destinado a facilitar 

a inferência e análise de redes biológicas (i.e., redes de coexpressão, redes 

regulatórias, e redes de interação proteína-proteína). Além disso, BioNERO permite a 

comparação de redes inferidas a partir de dados transcriptômicos obtidos de 

indivíduos da mesma espécie e de espécies diferentes, podendo ser usado para 

análises evolutivas. 

 Além disso, desenvolvemos um pacote R chamado cageminer destinado a 

integrar redes de coexpressão gênica inferidas com o BioNERO com SNPs obtidos 

de GWAS para identificar e priorizar genes candidatos de alta confiança associados 

a características quantitativas. O algoritmo implementado no cageminer reduz as listas 

de possíveis genes candidatos em 99%, resultando em pequenos conjuntos de genes 

de alta confiança que são potenciais alvos para aplicações biotecnológicas. 

 Finalmente, aplicamos os dois pacotes desenvolvidos nesse trabalho para 

identificar e priorizar genes candidatos em soja associados à resistência a: i. fungos 

fitopatogênicos, em particular Cadophora gregata, Fusarium virguliforme, Fusarium 

graminearum, Macrophomina phaseolina, e Phakopsora pachyrhizi e; ii. pragas da 

cultura da soja, em particular os insetos Aphis glycines e Spodoptera litura, e o 

nematoide Heterodera glycines. Os genes identificados em cada estudo devem ser 

validados experimentalmente e podem ser usados para desenvolver linhagens de soja 

resistentes a fungos e pragas. 


