

TOXICIDADE DE SEMENTES DE GENÓTIPOS DE Phaseolus vulgaris (L) AO INSETO Callosobruchus maculatus (F)

ROBERTA BESSA DA SILVA

UNIVERSIDADES ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO – UENF

Campos dos Goytacazes – RJ Fevereiro – 2022

TOXICIDADE DE SEMENTES DE GENÓTIPOS DE *Phaseolus vulgaris (L)* AO INSETO *Callosobruchus maculatus (F)*

ROBERTA BESSA DA SILVA

Dissertação apresentada ao Centro de Biociências e Biotecnologia, da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Mestre em Biotecnologia Vegetal.

UNIVERSIDADES ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO – UENF

Campos dos Goytacazes – RJ Fevereiro – 2022

FICHA CATALOGRÁFICA

UENF - Bibliotecas Elaborada com os dados fornecidos pela autora.

S586 Silva, Roberta Bessa da.

TOXICIDADE DE SEMENTES DE GENÓTIPOS de *Phaseolus vulgaris* (L), AO INSETO-PRAGA *Callosobruchus maculatus (F) /* Roberta Bessa da Silva. - Campos dos Goytacazes, RJ, 2022.

133 f. Inclui bibliografia.

Dissertação (Mestrado em Biotecnologia Vegetal) - Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, 2022.

Orientadora: Antonia Elenir Amancio Oliveira.

1. Feijão-comum. 2. proteínas tóxicas. 3. *Vigna unguiculata*. 4. sementes resistentes. 5. defesa de sementes.. I. Universidade Estadual do Norte Fluminense Darcy Ribeiro. II. Título.

CDD - 660.6

TOXICIDADE DE SEMENTES DE GENÓTIPOS DE Phaseolus vulgaris (L) AO INSETO Callosobruchus maculatus (F)

Dissertação apresentada ao Centro de Biociências e Biotecnologia, da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Mestre em Biotecnologia Vegetal.

Aprovado em 16 de fevereiro de 2022. Comissão examinadora:

Profº. Dr. José Roberto da Silva UFRJ - Macaé

Prof^a. Dr^a. Érica de Oliveira Mello LFBM/CBB/UENF

Prof°. Dr.Geraldo de Amaral Gravina LEAG/CCTA/UENF

Prof.ª Dr.ª Antônia Elenir Amâncio Oliveira LQFPP/CBB/UENF (Orientadora)

UNIVERSIDADES ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO – UENF

> Campos dos Goytacazes – RJ Fevereiro – 2022

> > Issila

Este trabalho foi realizado no Laboratório de Química e Função de Proteínas e Peptídeos (LQFPP), no Centro de Biociências e Biotecnologia (CBB) da Universidade Estadual do Norte Fluminense Darcy Ribeiro – UENF, sob orientação da Professora Dr^a. Antônia Elenir Amancio Oliveira.

Financiamentos:

- FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro);
 - CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior);
 - CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)

Dedicatória

Ao meu amado avô, Zilco Ferreira Bessa (*in memorian*), que me encorajou, me ajudou e sempre foi meu maior exemplo de ser humano.

AGRADECIMENTOS

A Deus que sempre esteve comigo me dando forças e sustento em todos os momentos difíceis.

A professora Antônia Elenir pela ótima orientação e por todo investimento em mim, me ajudando desde os experimentos da graduação até a presente dissertação, na pós-graduação. Sei que te dou muito trabalho, mas sem a senhora nada disso seria possível. Muito obrigada pelas broncas, lições e cobranças, a senhora sem dúvidas é um excelente exemplo a ser seguido.

A prof.ª Dr.ª Érica Mello, ao prof. Drº Geraldo Gravina e ao prof. Drº José Roberto da Silva por terem aceitado participar da banca e contribuir para meu crescimento profissional.

Ao prof. Drº Geraldo Gravina por ter doado as sementes utilizadas nesse trabalho.

Ao meu amado esposo, amigo e companheiro, Farlei Souza, que esteve comigo nos piores e nos melhores momentos me encorajando, me ouvindo, me ajudando e me acolhendo.

A minha mãe, Rosani, meu pai, Arivelton, meu irmão, Filipe, minha irmã, Rosineia e meus sobrinhos, Jhonattan e Gabriela, que me apoiam e me motivam.

As minhas amigas de longos anos: Juliana Ferreira, Sabrina Ferrini, Oliana Oliveira, Karullyne Furtado, Raquel Plaster. Obrigada por todo apoio e incentivo, vocês são maravilhosas.

Aos amigos que a UENF me deu de presente: Amanda Vasconcelos, Juan Carlo, Murilo Salardani, Ana Cinthia Ferreira e Pamella Inácio, vocês foram fundamentais nessa jornada. Obrigada por cada palavra de apoio e por todo carinho comigo.

Aos meus companheiros de laboratório: Sarah Rodrigues, Geovanna Bastos, Kayan Ventury e Aline Licurgo. Obrigada por todas as ajudas, conversas e por me aturarem (porque sei que não sou fácil).

Um agradecimento especial a Sarah Rodrigues, um exemplo de profissional, amiga, companheira de trabalho e de ser humano. Muito obrigada por estar sempre disposta a ajudar, a ouvir e aconselhar. Você é sensacional!

A coordenação do curso de pós-graduação em Biotecnologia Vegetal. Em especial ao professor Thiago Venâncio, que nunca mediu esforços para ajudar e orientar os alunos do programa. Um agradecimento especial à Margareth, secretária do programa, que faz tudo que pode para ajudar os alunos.

A UENF e todo seu corpo docente, que em sua maioria zela pela formação de excelentes profissionais e que persistem em meio a tantas crises.

Ao CNPq, CAPES e FAPERJ por terem financiado meu projeto.

A todos que torcem por mim e que contribuem de alguma forma para minha formação acadêmica.

E a mim mesma, que mesmo em meio a tantas dificuldades permaneci resiliente e pude chegar até aqui.

"Os sonhos não determinam o lugar que você vai estar, mas produzem a força necessária para o tirar do lugar em que está."

(Augusto Cury)

SUMÁRIO

LISTA D	DE ABREVIAÇÕES	xi
ÍNDICE	DE FIGURAS	xiii
LISTA E	DE TABELAS	xvi
LISTA E	DE TABELAS SUPLEMENTARES	xvi
RESUM	IO	xvii
ABSTR	ACT	xix
1. II	NTRODUÇÃO	23
1.1.	O feijão comum	24
1.2.	O inseto-praga Callosobruchus maculatus	25
1.3.	Proteínas de sementes tóxicas para insetos-pragas	29
2. C	DBJETIVOS	35
2.1.	Objetivo geral	35
2.2.	Objetivos específicos	35
3. N	//ETODOLOGIA	35
3.1.	As sementes	35
3.2.	O inseto Callosobruchus maculatus	36
3.3.	Análises da toxicidade das farinhas das sementes para o inseto	36
3.3.1.	Sementes artificiais contendo farinha dos cotilédones	36
3.3.2.	Avaliação dos parâmetros morfológicos de desenvolvimento das larvas	37
3.4.	Análise da Proteômica comparativa dos cotilédones dos genótipos L7 e L	
•	aris	
3.4.1.	Extração proteica	
3.4.2.	Digestão proteica	
3.4.3.	Análise das proteínas por espectrometria de massas	
3.4.4.	Análise dos dados da proteômica	
3.5.	Isolamento das frações proteicas por cromatografia de troca iônica	
3.6. PAGE	Visualização das proteínas por eletroforese em gel de poliacrilamida	
3.7.	Análises da toxicidade das frações para o inseto	
3.8.	Extração e análises bioquímicas das larvas	
3.8.1.	Quantificação de glicose	

3.8.2.	Quantificação de proteínas totais solúveis	43
3.8.3.	Quantificação de triacilglicerois	43
3.8.4.	Quantificação de Colesterol	44
3.8.5.	Determinação da atividade de α-amilase	44
3.8.6.	Determinação da atividade de proteases cisteínicas	45
3.8.7.	Determinação da atividade de lipases	46
3.9.	Análises estatísticas	46
4.	RESULTADOS	46
4.1. conte	Performance e sobrevivência do inseto <i>C. maculatus</i> em sementes ndo as farinhas dos cotilédones dos genótipos de <i>P. vulgaris</i>	
4.1.1.	Toxicidade das farinhas dos cotilédones do genótipo L7	47
4.1.2.	Toxicidade das farinhas dos cotilédones do genótipo L8	49
4.2. 2, 5 e	Análises bioquímicas das larvas de <i>C. maculatus</i> controle e aliment 10 % da farinha dos cotilédones do genótipo L7 de <i>P. vulgaris</i>	52
4.2.1.	Quantificação de glicose	52
4.2.2.	Quantificação de proteínas totais solúveis	53
4.2.3.	Quantificação de triacilglicerois	54
4.2.4.	Quantificação de colesterol	55
4.2.5.	Determinação da atividade de α-amilase	56
4.2.6.	Determinação da atividade de protease cisteínica	57
4.2.7.	Determinação da atividade de lipases	58
4.3. 5 e 10	Análises bioquímicas das larvas de <i>C. maculatus</i> controle e aliment % da farinha dos cotilédones do genótipo L8 de <i>P. vulgaris</i>	
4.3.1.	Quantificação de glicose	59
4.3.2.	Quantificação de proteínas totais solúveis	60
4.3.3.	Quantificação de triacilglicerois	61
4.3.4.	Quantificação de colesterol	62
4.3.5.	Determinação da atividade de α-amilase	63
4.3.6.	Determinação da atividade de protease cisteínica	64
4.3.7.	Determinação da atividade de lipases	65
4.4. vulga	Análise proteômica comparativa dos cotilédones dos genótipos L7 eris	
4.5.	Isolamento e visualização de proteínas dos genótipos L7 e L8 de P	_
4.5.1.	Fracionamento das proteínas dos cotilédones do genótipo L7	87

4.5.3. genót	Visualização do perfil proteico das frações isoladas dos cotilédones dos ipos L7 e L8 de <i>P. vulgaris</i>
4.6. artific	Performance e sobrevivência do inseto <i>C. maculatus</i> em sistema de sementes iais contendo as frações proteicas isoladas dos genótipos de <i>P. vulgaris</i> 90
4.6.1. as pro	Análises bioquímicas das larvas de <i>C. maculatus</i> controle e alimentadas com oteínas fracionadas dos cotilédones dos genótipos de <i>P. vulgaris</i>
5.	DISCUSSÃO94
6.	CONCLUSÕES
7.	REFERÊNCIAS
ANEX	OS113

LISTA DE ABREVIAÇÕES

ANOVA "Analysis Of Variance"

Abs Absorbância

APS "Amonium Persulfate"

BLASTp "Protein-Basic Local Alignment Search Tool"

B.O.D. "Biochemical Oxygen Demand"

BCA "Bicinchoninic acid"

BSA "Bovine serum albumi"

CONAB Companhia Nacional de Abastecimento

cv cultivar

DAB Di-amino-benzidina

DAO Dias após a oviposição

DEAE Dietilaminoetil

DTNB acido ditionitrobenzóico

DTT "1,4 – Dithiothreitol"

EMBRAPA Empresa Brasileira de Pesquisa Agropecuária

HCI Ácido clorídrico

kDa kilo Dalton

MAPA Ministério da Agricultura, Pecuária e Abastecimento

MW Marcador de massa molecular

NaCI Cloreto de sódio

OPD OrtoPhenilDiamina

PAGE "PolyAcrylamide Gel Electrophoresis"

PBS "Phosphate Buffered Saline (Tampão fosfato salina)"

SDS "Sodium Dodecyl Sulfate"

TCA Ácido Tricloroacético

Tris "hidroximetil amino etano"

ÍNDICE DE FIGURAS

Figura 1 – Emergência do inseto Callosobruchus maculatus, na fase adulta, do interior
das sementes de Vigna unguiculata
Figura 2 – Representação do ciclo de vida de <i>Callosobruchus maculatus</i> em sementes
hospedeiras de <i>Vigna unguiculata</i>
Figura 3 - Percentual de sobrevivência das larvas de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha dos cotilédones do genótipo L7 de <i>P. vulgaris.</i>
Total control do general de 1. Valgaris
Figura 4 – Fotos das larvas de <i>C. maculatus</i> desenvolvidas nas sementes artificiais controle ou contendo 2, 5 e 10 % de farinha dos cotilédones do genótipo L7 de <i>P.</i>
<i>vulgaris.</i>
Figura 5 – Massa (A) e tamanho (B) das larvas de <i>C. maculatus</i> encontradas 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de <i>P. vulgaris</i>
Figure 6. Beneauted de calematica de la companya de 6. marchatas 00 DAG (discourée
Figura 6 – Percentual de sobrevivência das larvas de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5, 10 e 20 % de farinha dos
cotilédones do genótipo L8 de <i>P. vulgaris</i> 50
Figura 7 – Fotos das sementes e das larvas de <i>C. maculatus</i> nas sementes artificiais controle ou contendo 5, 10 e 20 % de farinha dos cotilédones do genótipo L8 de <i>P.</i>
<i>vulgaris.</i> 51
Figura 8 - Massa (A) e tamanho (B) das larvas de <i>C. maculatus</i> encontradas 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5, 10 e 20 % de
farinha de cotilédone do genótipo L8 de <i>P. vulgaris</i>
Figura 9 –Quantidade de glicose (μg) por larva (A) e quantidade de glicose (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de <i>P. vulgaris</i> .
Figura 10 - Quantidade de proteínas totais solúveis (μg) por larva (A) e quantidade de proteínas totais solúveis (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a
oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de <i>P. vulgaris</i>
Figura 11 - Quantidade de triacilgliceróis (μg) por larva (A) e quantidade de triacilgliceróis (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição)

genótipo L7 de <i>P. vulgaris.</i>		
Figura 12 - Quantidade Colesterol (μg) por larva (A) e quantidade de Colesterol (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de <i>P. vulgaris</i> .		
56		
Figura 13 - O gráfico A representa a quantidade de amilase (mU) por larva e o gráfico B representa a quantidade de amilase (mU) por mg de larva de <i>C. maculatus</i> encontradas 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de <i>P. vulgaris</i>		
Figura 14 - Atividade de protease cisteínica (μg) por larva (A) e atividade de protease cisteínica (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de <i>P. vulgaris</i>		
Figura 15 - Atividade de lipase (mU) por larva (A) e atividade de lipase (mU) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de <i>P. vulgaris</i> .		
Figura 16 - Quantidade de glicose (μg) por larva (A) e quantidade de glicose (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de <i>P. vulgaris</i> .		
Figura 17 - Quantidade de proteínas totais solúveis (μg) por larva (A) e quantidade de proteínas totais solúveis (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de <i>P. vulgaris</i> .		
Figura 18 - Quantidade de triacilglicerois (μg) por larva (A) e quantidade de triacilglicerois (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de <i>P. vulgaris</i> .		
Figura 19 - Quantidade de colesterol (μg) por larva (A) e quantidade de colesterol (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de <i>P. vulgaris</i> .		
Figura 20 – Atividade de α-amilase (mU) por larva (A) e atividade de α-amilase (mU) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais		

controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de <i>P. vulgari</i> s
Figura 21 - Atividade de protease cisteínica (μg) por larva (A) e atividade de protease cisteínica (μg) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de <i>P. vulgaris.</i>
Figura 22 – Atividade de lipase (mU) por larva e atividade de lipase (mU) por mg de larva (B) de <i>C. maculatus</i> 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de <i>P. vulgaris</i> 66
Figura 23 - Diagrama de venn representando a distribuição das proteínas identificadas durante a análise proteômica
Figura 24 - Perfil cromatográfico do fracionamento das proteínas extraídas da farinha dos cotilédones do genótipo L7 de <i>P. vulgaris</i> em troca iônica em DEAE-celulose 88
Figura 25 – Perfil cromatográfico do fracionamento das proteínas extraídas da farinha dos cotilédones do genótipo L8 de <i>P. vulgari</i> s em troca iônica em DEAE-celulose 89
Figura 26 – Visualização do perfil proteico, em gel de eletroforese 12% na presença de SDS (SDS-PAGE), das proteínas obtidas na cromatografia de troca iônica em DEAEcelulose90
Figura 27 - Percentual de eclosão das larvas de <i>C. maculatus</i> 6 DAO (dias após a oviposição) desenvolvidas em sementes artificiais controle ou contendo 2 % das frações proteicas não retidas e retidas do genótipo L7 e L8 de <i>P. vulgaris</i> , provenientes da cromatografia de troca iônica
Figura 28 - Percentual de sobrevivência das larvas de <i>C. maculatus</i> 20 DAO (dias após a oviposição) desenvolvidas em sementes artificiais controle ou contendo 2 % das frações proteicas não retidas e retidas do genótipo L7 e L8 de <i>P. vulgaris</i> , provenientes da cromatografia de troca iônica
Figura 29 - Fotos das larvas de <i>C. maculatus</i> desenvolvidas nas sementes artificiais controle ou contendo 2 % das frações proteicas não retidas e retidas do genótipo L7 e L8 de <i>P. vulgaris</i> , provenientes da cromatografia de troca iônica
Figura 30 – O gráfico representa o tamanho das larvas (mm) de <i>C. maculatus</i> encontradas 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2 % das frações proteicas não retidas e retidas do genótipo L7 e L8 de <i>P vulgaris</i> , provenientes da cromatografia de troca iônica

LISTA DE TABELAS

Tabela 1 – Proteínas identificadas unicamente no genótipo L7 identificadas durante a análise proteômica
Tabela 2 – Proteínas identificadas unicamente no genótipo L7 que não foram caracterizadas pelo software OmicsBox
Tabela 3 - Proteínas unicamente identificadas no genótipo L8 de <i>P. vulgaris</i> identificadas durante a análise proteômica
Tabela 4 -Proteínas unicamente encontradas no genótipo L8 de <i>P. vulgaris</i> que não foram caracterizadas pelo software OmicsBox
Tabela 5 - Proteínas com expressão aumentada (UP) no genótipo L7 de <i>P. vulgaris,</i> identificadas durante a análise proteômica
Tabela 6 - Proteínas com expressão aumentada (UP) no genótipo L7 de <i>P. vulgari</i> s, que não foram caracterizadas pelo software OmicsBox
Tabela 7 - Proteínas encontradas diminuídas (DOWN) no genótipo L7 de P. vulgaris identificadas durante a análise proteômica. 77
Tabela 8 - Proteínas encontradas diminuídas (DOWN) no genótipo L7 de <i>P. vulgaris</i> que não foram caracterizadas pelo software OmicsBox
LISTA DE TABELAS SUPLEMENTARES
Tabela Suplementar 1 - Proteínas identificadas, por espectrometria de massas, nos cotilédones das sementes dos genótipos L7 e L8 de <i>Phaseolus vulgaris</i> 113

RESUMO

O Phaseolus vulgaris (feijão-comum) é uma leguminosa de grande importância econômica, pois é muito utilizada na alimentação humana. O inseto Callosobruchus maculatus, que é a principal praga de outro importante feijão, a Vigna unguiculata, normalmente não infesta sementes de P. vulgaris, sendo assim de grande importância estudos que visem entender essa resistência. O objetivo desse trabalho é avaliar a toxicidade de sementes dos genótipos L7 e L8 de P. vulgaris para o inseto C. maculatus. Para avaliar a presença de compostos tóxicos nas sementes, farinhas nas concentrações de 2, 5 e 10 % do genótipo L7 e 5, 10 e 20 % do genótipo L8 foram adicionadas na dieta do inseto. A proteômica comparativa de ambos os genótipos foi realizada por espectrometria de massas. As proteínas dos cotilédones dos genótipos foram fracionadas por cromatografia de troca iônica em DEAE-celulose e a toxicidade das frações testada para o inseto. Alterações nos níveis de proteínas, glicose, triacilglicerois, colesterol e das enzimas digestivas das larvas sobreviventes aos tratamentos também foram observadas. Nossos resultados mostraram que farinhas dos cotilédones de ambos os genótipos interferiram no desenvolvimento das larvas de C. maculatus, diminuindo a massa e o tamanho das larvas de 20 DAO. As larvas desenvolvidas nas sementes contendo as farinhas apresentaram alterações nas quantidades de glicose, proteínas, triacilglicerídeos, colesterol e nas atividades das enzimas lipase, amilase e proteases cisteínicas. A análise de proteômica comparativa dos genótipos L7 e L8 identificou 615 proteínas, sendo 496 presentes em ambos os genótipos com níveis de expressão similares. Um total de 40 proteínas estavam aumentadas (UP) e 62 proteínas estavam diminuídas (DOWN) no genótipo L7, 9 proteínas estavam presentes unicamente no genótipo L7 e 8 eram únicas do genótipo L8. A presença de proteínas clássicas de defesa, como faseolinas, proteínas com domínio lectina_legB e lipoxigenases foram identificadas na proteômica. A fração não retida na cromatografia do genótipo L7 mostrou uma banda proteica majoritária, de 35 kDa, enquanto a fração retida apresentou pelo menos 6 bandas proteicas com massas moleculares entre 180 e 10 kDa. A fração não retida de L-8 mostrou duas bandas proteicas majoritárias de 35 e 25 kDa, enquanto a fração retida apresentou pelo menos 6 bandas proteicas com massas moleculares entre 180 e 10 kDa. As análises de toxicidade mostraram que as frações não retidas e retidas de ambos os cultivares, em concentração de 2 %, reduziram 100 % a sobrevivência das larvas do inseto 20 DAO.

Nossos resultados apontam para a presença de proteínas tóxicas para o inseto em cotilédones de ambos os genótipos de *P. vulgaris* e indicam que parte da resistência à infestação por *C. maculatus*, apresentada por essas sementes, pode estar relacionada à presença dessas proteínas

Palavras-chaves: Feijão-comum; proteínas tóxicas; *Vigna unguiculata*; sementes resistentes; defesa de sementes.

ABSTRACT

Phaseolus vulgaris (common bean) is a legume of great economic importance, as it is widely used in human food. The insect Callosobruchus maculatus, which is the main pest of another important bean, Vigna unquiculata, does not normally infest P. vulgaris seeds therefore, studies that aim to understand this resistance are of great importance. The objective of this work is to evaluate the toxicity of seeds of genotypes L7 and L8 of P. vulgaris to the insect C. maculatus. To detect the presence of toxic compounds in the seeds, flours at concentrations of 2, 5 and 10% of the L7 genotype and 5, 10 and 20% of the L8 genotype were added to the insect's diet. Comparative proteomics of both genotypes were performed by mass spectrometry. The cotyledon proteins of the genotypes were fractionated by ion exchange chromatography on DEAE-cellulose and the toxicity of the fractions tested for the insect. Changes in the levels of proteins, glucose, triacylglycerols, cholesterol and digestive enzymes of the larvae that survived the treatments were also performed. Our results showed that meal from the cotyledons of both genotypes interfered with the development of C. maculatus larvae, decreasing the mass and size of larvae at 20 DAO (days after oviposition). The larvae that developed in the seeds containing the flours showed alterations in the amounts of glucose, proteins, triacylglycerides, cholesterol and in the activities of lipase, amylase and cysteine protease enzymes. Comparative proteomics analysis of genotypes L7 and L8 identified 615 proteins, 496 of which were present in both genotypes with similar expression levels. A total of 40 proteins were increased (UP) and 62 proteins were decreased (DOWN) in the L7 genotype, 9 proteins were present only in the L7 genotype and 8 were unique in the L8 genotype. The presence of classic defense proteins, such as phaseolins, proteins with lectin legB domain and lipoxygenases were identified in the proteomics. The fraction not retained in the chromatography of the L7 genotype showed a major protein band of 35 kDa, while the retained fraction showed at least 6 protein bands with molecular masses between 180 and 10 kDa. The non-retained L-8 fraction showed two major protein bands of 35 and 25 kDa, while the retained fraction showed at least 6 protein bands with molecular masses between 180 and 10 kDa. Toxicity analyzes showed that the non-retained and retained fractions of both cultivars, in a concentration of 2 %, reduced 100 % the survival of the insect larvae 20 DAO. Our results point to the presence of toxic proteins for the insect in cotyledons of both genotypes of *P. vulgaris* and indicate that part of the resistance to infestation

by *C. maculatus*, presented by these seeds, may be related to the presence of these proteins.

Keywords: Common bean; toxic proteins; *Vigna unguiculata*; resistant seeds; seed defense.

1. INTRODUÇÃO

O aumento crescente da população ao longo dos anos, que pode chegar a 9 bilhões de habitantes na Terra até 2050, traz consigo a problemática de que a produção de alimentos precisa ser intensificada a fim de suprir toda essa demanda mundial em busca de alimentos (FAO, 2019). A Organização das Nações Unidas para Alimentação e Agricultura estima que será necessário aumentar a produção de alimentos em mais de 60 %, fazendo com que a agricultura siga em constantes avanços e melhorias (FAO, 2019). Dessa forma, a Organização das Nações Unidas (ONU) criou os 17 Objetivos de Desenvolvimento Sustentáveis (ODS, Agenda 2030) que deverão ser cumpridos até 2030. O segundo objetivo propõe que a fome seja erradicada no mundo, alcançando uma melhoria na segurança alimentar e proporcionando uma agricultura sustentável (ONU, 2015). Para que a fome possa ser erradicada no mundo a produção de alimentos deverá ser intensificada cada vez mais, aumentando assim a busca por alimentos de qualidade com custo baixo.

Os alimentos de origem vegetal são os mais consumidos pelos animais, destacando-se, os grãos, farinhas, farelos, rações, etc. Sendo assim a intensificação da produção agrícola para suprir a demanda de alimentos é de extrema importância. Entretanto essa intensificação da produção traz consigo o aumento da utilização de compostos químicos como pesticidas para o controle de pragas e patógenos. O uso excessivo desses compostos causa um grande custo para a produção agrícola, prejuízos ao meio ambiente e à saúde humana, uma vez que podem causar o desenvolvimento de inúmeras doenças (Peres e Moreira, 2003; Zhang *et al.*, 2018).

As plantas, de um modo geral, apresentam algum grau de resistência a agressões bióticas e abióticas. Essas defesas podem ser pré-existentes ou induzidas e se baseiam em estratégias morfológicas, fisiológicas e/ou bioquímicas. As sementes quiescentes apresentam defesas unicamente pré-existentes ou constitutivas (Edwards e Singh, 2006; War *et al.*, 2017). Nesse contexto, as sementes de espécies não hospedeiras de determinadas pragas, têm sido estudadas como fonte de compostos tóxicos com potencial para o controle dessas pragas.

1.1. O feijão comum

O *Phaseolus vulgaris*, popularmente conhecido como feijão comum, pertence à família Fabaceae e é considerado uma das leguminosas mais importantes no consumo alimentar no mundo (Jones, 1999; CONAB, 2018). Esse feijão é uma planta de ciclo anual que apresenta uma vasta variedade de cores, sabores e tipos, seu cultivo se dá principalmente em regiões tropicais e subtropicais (Toledo; Canniatti-Brazaca, 2008; MAPA, 2022). No Brasil, *o P. vulgaris* possui grande importância, pois somos atualmente o maior produtor e consumidor dessa leguminosa. A produtividade de *P. vulgaris* é de 1.061 kg/ ha plantados e uma produção total de mais de três milhões de toneladas, sendo a safra de 2021/22 7,2 % superior à safra anterior. As regiões com maior destaque de produção e consumo dessa leguminosa são as regiões Centro-Oeste, Sudeste e Sul (CONAB, 2022). O consumo dessa leguminosa pela população brasileira também é altíssimo, chegando a 2,9 milhões de toneladas, e estima-se que o consumo individual possa chegar a 17 kg por pessoa a cada ano (MAPA, 2018; CONAB, 2022).

Devido ao seu alto valor nutritivo, o *P. vulgaris* possui grande importância alimentícia para a população, principalmente de países subdesenvolvidos e em desenvolvimento (Vaz Patto *et al.*, 2015). O feijão tem um grande papel nas dietas vegetarianas e não vegetarianas, pois seus benefícios são inúmeros. Depois da proteína animal, os feijões são considerados as maiores fontes de proteína e nutrientes. No Brasil são produzidas aproximadamente três milhões de toneladas de grãos de *P. vulgaris*, em três safras anuais, com uma enorme variedade de grãos disponíveis para o consumidor (Haddad e Tanzman, 2003; MAPA, 2018).

A alta produção de sementes de *P. vulgaris* para suprir a demanda anual, faz com que essas sementes sejam submetidas a longos períodos de armazenagem em condições de temperatura e umidade específicas (Lorini *et al.*, 2015). Essas condições de armazenamento são muito parecidas com as condições favoráveis para o desenvolvimento de pragas e patógenos, que podem infestar as sementes gerando sérios danos na produção (Gallo *et al.*, 2002). Entretanto, muitos estudos apontam que as sementes de *P. vulgaris* apresentam mecanismos de defesa e toxicidades para alguns insetos (Kuns *et al.*, 2019; Veiga de Andrade *et al.*, 2020).

Desde a década de 90, muitos estudos vêm investigando o potencial tóxico dessa leguminosa com o intuito de entender seus mecanismos de defesas. Em 1990 Minny et al., observaram que os mecanismos de toxicidade de P. vulgaris poderiam estar ligados a presença da proteína arcelinas nessa leguminosa. Minny et al., (1990), mostraram que a adição de arcelinas extraídas de sementes de P. vulgaris, na alimentação do principal inseto-praga dessa semente, o Zabrotes subfasciatus, se apresentou tóxica, provocando um acúmulo dessa proteína no intestino das larvas. Estudos também mostraram que as sementes de P. vulgaris são fontes de toxinas para outros insetos, considerados não pragas dessas sementes. A presença de compostos tóxicos nos tegumentos (cascas) de sementes de P. vulgaris para outro importante inseto-praga, o C. maculatus, indicou esse como um motivo que justificaria a não habilidade desse inseto em conseguir penetrar as sementes da espécie (Silva et al., 2004; Souza et al., 2011; De Sá et al., 2014). Kluh et al. (2005), mostraram que inibidores de α-amilase extraídos de sementes de *P. vulgaris* foram responsáveis pelo efeito negativo no desenvolvimento de Tribolium castaneum e Drosophila melanogaster.

1.2. O inseto-praga Callosobruchus maculatus

Muitos dos grãos colhidos nas lavouras são armazenados por longos períodos com o intuito de suprir a demanda mundial de alimentos durante todo o ano. Desta forma é importante que esses grãos sejam mantidos com o mínimo de perdas possíveis (Lorini *et al.*, 2015). Mas o alto valor nutricional desses grãos faz com que eles se tornem alvo de ataques de inúmeras pragas (Gallo *et al.*, 2002). Os besouros e as traças são pertencentes a dois grandes grupos de pragas que atacam sementes armazenadas. Outras pragas, como roedores também causam grandes perdas no armazenamento de sementes (Lorini *et al.*, 2015). Porém, os insetos são as maiores ameaças para as sementes armazenadas por serem pequenos, podem passar despercebidos por muito tempo (FAO, 2010).

Os insetos são importantes polinizadores e contribuem para reprodução das plantas, mas também, inúmeras espécies podem causar desvantagens para as mesmas. Além de polinizadores, os insetos são predadores, em grande maioria são

herbívoros que se alimentam de diversos órgãos das plantas, como folhas e sementes (Brusca & Brusca, 2007). Na agricultura, insetos, principalmente os bruquídeos, representam um dos principais problemas para produção agrícola, sendo capazes de causar grandes prejuízos, pois atacam as plantas desde o campo até as sementes e produtos armazenados que serão comercializados (Galo *et al.*, 2002; FAO, 2010; El Sheikha, 2019).

O inseto *C. maculatus* é um coleóptero (Coleóptera) da família Chrysomelidae (Bruquídeos) que se destaca por ser a principal praga de sementes armazenadas do feijão de corda, *Vigna unguiculata*, um dos principais feijões cultivados no Brasil. Esses insetos causam grandes perdas nas sementes armazenadas, alimentando- se dos cotilédones, diminuindo assim o valor nutritivo, germinativo e comercial dessas sementes. Entretanto esse inseto também infesta, em menor escala, como outras espécies de sementes do gênero *Vigna* e alguns cultivares de *Glycine max*, *Phaseolus lunatus* e *Phaseolus vulgaris* (Gallo *et al.*, 2002; Cruz *et al.*, 2016; Cardoso *et al.*, 2017).

As condições para o ciclo de vida e reprodução do *C. maculatus* são bem parecidas com as condições de armazenamento dessas sementes maduras, principalmente em faixa de temperatura e umidade (Lorini *et al.*, 2015; Gallo *et al.*, 2002). Esse fator favorece a rápida reprodução, crescimento e proliferação dessas pragas nas sementes estocadas. As fêmeas colocam os ovos sobre o tegumento das sementes e o desenvolvimento do embrião se dá entre 3 e 5 dias dentro do ovo. As larvas saem do ovo, atravessam o tegumento e penetram nos cotilédones para se alimentarem das fontes de reservas, como proteínas, carboidratos e lipídios. O desenvolvimento das larvas se passa principalmente no interior da semente como mostrado na figura 1 e se completa entre 25-30 dias após a oviposição (DAO), dependendo da semente (Souza *et al.*, 2011; De Sá *et al.*, 2014). Quando os adultos se formam, eles saem das sementes, deixando furos ou galerias (Fig. 2), que abrem caminhos para a penetração de patógenos e outras pragas secundárias. Essas galerias também prejudicam o controle da absorção de água e das trocas gasosas, interferindo na germinação das sementes (De Sá *et al.*, 2014; Cruz *et al.*, 2016).

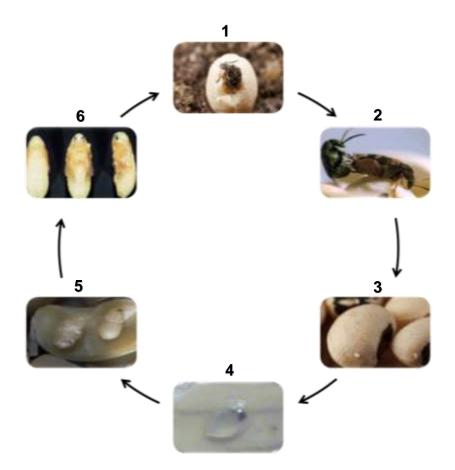


Figura 1 – Representação do ciclo de vida de *Callosobruchus maculatus* em sementes hospedeiras de *Vigna unguiculata*. 1 – Emergência do inseto adulto do interior da semente. 2 – Acasalamento. 3 – Deposição de ovos sobre o tegumento das sementes. 4 – Desenvolvimento embrionário no interior do ovo. 5 – Desenvolvimento da larva no interior da semente. 6 – Formação de pupas. Baseada em Beck e Blumer (2014).

Figura 2 – Emergência do inseto *Callosobruchus maculatus*, na fase adulta, do interior das sementes de *Vigna unguiculata*. Imagem obtida no site: www.agrolink.com.br (todos os direitos reservados).

Devido ao fato desses insetos terem todo o desenvolvimento larval no interior das sementes, consumindo os nutrientes armazenados nos cotilédones, essas sementes após a infestação, ficam inviabilizadas para o consumo humano e animal, perdendo valor nutricional e comercial. As sementes infestadas também sofrem grandes prejuízos em relação à germinação, pois se tornam incapazes de germinar e formar uma nova planta, uma vez que suas reservas foram consumidas pelos insetos (Cruz et al., 2016).

Para controlar e prevenir a infestação, essas sementes são impregnadas com muitos inseticidas sintéticos, após a colheita e durante todo o armazenamento. Entretanto, o uso desses inseticidas gera inúmeras desvantagens, como altos custos, contaminação ambiental, resíduos deixados nas sementes que serão usadas para alimentação, insetos resistentes e a contaminação do trabalhador rural (LORINI, 1999; Karbache *et al.*, 2011). Dados os efeitos tóxicos desses inseticidas, torna-se imprescindível o desenvolvimento de meios alternativos de controle (Lewis *et al.*, 1997; Siqueira *et al.*, 2000). Trabalhos apontam como alternativas viáveis a seleção de sementes de cultivares resistentes ao ataque de insetos bem como o entendimento dos mecanismos naturais de defesa que fazem de muitas sementes, não-hospedeiras de determinadas pragas. Ambas as linhas de estudo podem contribuir para a diminuição das perdas dessas sementes e do uso de pesticidas (Singh e Kaur, 2018).

Trabalho recente realizado em colaboração com o nosso grupo, estudou a performance de *C. maculatus* infestando sementes de 19 genótipos de *P. vulgaris* do banco de germoplasmas da UENF. Esse trabalho mostrou uma enorme variação na oviposição, de menos de 2 ovos até 19 ovos por semente. Embora ovos tenham sido ovipositados em todas as sementes, a eclosão larval foi reduzida 100 %. Embora não tenha ocorrido a eclosão, que é a saída completa da larva de dentro do ovo, todas as larvas escavaram e depositaram farinha dentro dos ovos, entretanto morreram durante a tentativa de penetração dos cotilédones (Andrade *et al.*, 2020). Esses dados apontam para uma grande resistência das sementes de *P. vulgaris* para a infestação por *C. maculatus*.

A caracterização da resistência à infestação por *C. maculatus* de cinco genótipos de *P. vulgaris*, incluindo o genótipo UENF 7-6-6 (L-7), foi realizada pelo nosso grupo e mostrou que todos os genótipos bloquearam o desenvolvimento do

inseto nas fases iniciais do desenvolvimento, como na eclosão e penetração dos cotilédones (Silva, 2019). Sendo assim, tornam-se de grande importância estudos que visem a caracterização dos compostos, com ênfase nas proteínas, presentes nas sementes de *P. vulgaris*, que estejam relacionadas à toxicidade para esse inseto. Estudos que visem o entendimento dos mecanismos de toxicidade dessas sementes podem fornecer conhecimentos para a melhoria de outros feijões, como a *Vigna unguiculata*, cuja produção é seriamente comprometida pela infestação por *C. maculatus*.

1.3. Proteínas de sementes tóxicas para insetos-pragas

As sementes são um grande avanço na evolução das plantas, pois garantem a perpetuação das espécies, promovem proteção e proporcionam nutrientes ao embrião, garantindo resistência a diversas condições ambientais. Durante os processos de formação e preenchimento das sementes, são acumulados diversos tipos de nutrientes, incluindo proteínas, lipídios e amido. Dessa forma, as sementes possuem não só importância biológica, mas também possuem importância econômica e nutricional, uma vez que são muito utilizadas na alimentação em diversos países (Han e Yang, 2015).

Sabe-se que ao longo dos anos, as plantas passaram por inúmeras evoluções adaptativas para garantir sua sobrevivência e minimizar ataque de predadores. Em sementes, o tegumento é considerado a primeira barreira de proteção contra agressores e se apresenta principalmente como uma barreira física (Souza *et al.*, 2011; De Sá *et al.*, 2018). No entanto, os tegumentos também podem apresentar compostos tóxicos, funcionando também como barreira química. Alguns estudos mostraram que a presença de compostos tóxicos nas farinhas de tegumentos de algumas sementes, como *Albizia lebbeck, Canavalia ensiformis, Phaseolus lunatus* e *P. vulgaris* foi capaz de atrapalhar o desenvolvimento de larvas de *C. maculatus*, inibindo a eclosão larval, desenvolvimento e taxa de sobrevivência desse inseto (Moraes *et al.*, 2000; Silva *et al.*, 2004; Souza *et al.*, 2011; Silva *et al.*, 2016; De Sá *et al.*, 2014, 2018; Andrade *et al.*, 2020).

Estudos mostram que muitas sementes de leguminosas são ricas em compostos de defesa, incluindo proteínas tóxicas para insetos. Dentre essas proteínas

se destacam as proteínas de reserva do tipo vicilinas, arcelinas, lectinas, inibidores de proteases e de α-amilases, quitinases, etc (Macedo *et al.*, 1993; Souza *et al.*, 2011; Silva *et al.*, 2018; Kunz *et al.*, 2019).

As vicilinas são proteínas do tipo globulinas 7S, classificadas como proteínas de reserva e encontradas em altas concentrações nas sementes. Desde a década de 90, as vicilinas têm sido relacionadas com a toxicidade de algumas sementes para insetos. Já foi observado que vicilinas isoladas de diversas sementes foram tóxicas para insetos como C. maculatus, Tenebrio molitor e Diatraea sacaharalis (Macedo et al., 1993; Yunes et al., 1998; Mota et al., 2003; Paes et al., 2008). Proteínas do tipo vicilinas de P. vulgaris, que são denominadas faseolinas, já foram isoladas tanto de cotilédones como de tegumentos das sementes e se apresentaram tóxicas para o inseto C. maculatus (Yunes et al. 1998; Silva et al., 2004). Kuns et al. (2019), observaram que a ingestão de faseolinas causou estresse oxidativo em células epiteliais do intestino de larvas de C. maculatus, o que afetou diretamente o desenvolvimento das larvas. Vicilinas tóxicas para C. maculatus também já foram isoladas de outra espécie de *Phaseolus*, como *P. lunatus* (Moraes et al., 2000), e de outras espécies como Canavalia ensiformis (Oliveira et al. 1999). A toxicidade dessas vicilinas para insetos, incluindo *C. maculatus*, tem sido relacionada com a capacidade que essas proteínas apresentam de se ligarem a estruturas quitinosas presentes no intestino médio das larvas (Macedo et al., 1993; Sales et al., 2001; Motta et al., 2003; Paes et al., 2008). Essas vicilinas também se ligaram a matrizes de quitina in vitro (Yunes et al., 1998; Miranda et al., 2020) e em estruturas quitinosas do intestino de larvas de outros insetos como T. molitor (Paes et al., 2008) e D. saccharalis (Motta et al., 2003). Vicilinas isoladas de sementes de Enterolobium contortisiliquum também foram tóxicas para larvas de C. maculatus, reduzindo tanto as larvas sobreviventes quanto a massa larval, em concentração de 1 %. Essas vicilinas também foram capazes de se ligar a estruturas quitinosas no intestino das larvas (Moura et al., 2007). Vicilinas com afinidade à quitina foram isoladas do tegumento de sementes de A. lebbeck e em concentrações de 0,1 % foram capazes de diminuir em 78 % a massa das larvas de C. maculatus (Souza et al., 2012). Ensaios in vitro e in silico mostraram que mudanças na conformação de vicilinas, como modificações químicas no aminoácido triptofano, podem diminuir a afinidade à quitina. Modificações químicas

em alguns aminoácidos da vicilina diminuíram a toxicidade dessa proteína para o inseto *C. maculatus* (Miranda *et al.*, 2020). Ferreira *et al.*, (2021) isolaram vicilinas de um genótipo de *Vigna unguiculata*, resistente a infestação por *C. maculatus* que foram tóxicas para as larvas e também apresentaram afinidade à quitina.

Arcelinas são proteínas ácidas, de massa molecular entre 34 e 37 kDa (Osborn et al., 1985; Hartweck et al., 1991), encontradas em concentrações relativamente altas em sementes do gênero Phaseolus, inclusive na espécie P. vulgaris, e em algumas sementes do gênero Lablab. Essas proteínas são descritas, por alguns autores, como proteínas com função de reserva e de defesa. O potencial inseticida das arcelinas também tem sido descrito para insetos-praga de sementes armazenadas, como o Zabrotes subfasciatus, Rhyzopertha dominica, Oryzaephilus surinamensis e C. maculatus (Minny et al., 1990; Janarthanan et al., 2008; Grazziotin et al., 2020). Estudos mostraram que a adição de arcelinas na alimentação de larvas de R. dominica e O. surinamensis atrasou o desenvolvimento larval e causou uma alta mortalidade das larvas (Janarthanan et al., 2008). Z. subfasciatus e C. maculatus desenvolvidos em sementes contendo o gene Arc 1, que codifica para uma arcelina, apresentaram aumento no tempo estimado de emergência dos insetos adultos e redução no número de insetos emergidos. Além disso, em Z. subfasciatus, foi possível observar uma queda drástica na sua proliferação a partir da quinta geração, indicando uma fraqueza nos insetos a cada geração criada nessas sementes (Grazziotin et al., 2020). Minney et al. (1990) sugeriram que o possível mecanismo de toxicidade para as arcelinas está relacionado com a não digestão dessas proteínas no intestino de Z. subfasciatus, uma vez que as arcelinas presentes em sementes de P. vulgaris se mostraram resistentes a hidrólise por proteases do intestino desses insetos.

As lectinas são consideradas importantes proteínas de armazenamento e estão presentes em abundancia em diversos órgãos e tecidos vegetais, como sementes, cascas, folhas e bulbos. Entretanto, essas proteínas também estão relacionadas à defesa de plantas (Michiels *et al.*, 2010). As lectinas possuem ao menos um domínio não catalítico que as torna capazes de se ligar a carboidratos específicos, tanto monossacarídeos quanto oligossacarídeos (Peumans e Van Damme 1995). Alguns estudos já mostraram que lectinas extraídas de diferentes espécies vegetais se apresentaram tóxicas para alguns insetos. Lectinas com

afinidade específica a galactase, purificadas de Sphenostyles stenocarpa (feijão inhame africano), quando incorporadas na alimentação de larvas de *C. maculatus* nas concentrações de 0,2, 2 e 5 % casou efeito negativo no desenvolvimento larval e mortalidade entre 30 e 88 % (Machuka et al., 2000). As lectinas extraídas de outros órgãos vegetais também se mostraram tóxicas para insetos. Nunes et al. (2015) observaram que ao incorporar concentrações entre 0,25 e 1 % de lectina de casca de Crateava tapia (CrataBL) à alimentação de larvas de C. maculatus houve uma diminuição na massa dessas larvas de 45 a 70 %. Lectinas extraídas de outras espécies vegetais, como sementes de Talisia esculenta (TEL) e folhas de Bauhinia monandra (BmoLL) também apresentaram toxicidade para os insetos C. maculatus e Z. subfasciatus. A TEL incorporada a 2 % na alimentação desses insetos provocou mortalidade nas larvas de C. maculatus e Z. subfasciatus e a 1 % reduziu 50 % a massa larval (Macedo et al., 2002). Enquanto que a BmoLL em uma concentração de 0,5 % causou uma mortalidade de 50 % e uma diminuição de 20 % na massa larva de Z. subfasciatus. Em concentração de 0,32 % a BmoLL causou 50 % de mortalidade e em 0,4 % causou uma diminuição de 50 % da massa larval de C. maculatus. (Macedo et al., 2007). Dessa forma, observa-se que as lectinas vegetais podem causar efeitos tanto no crescimento quanto na sobrevivência dos insetos (Michiels et al., 2010).

Os inibidores de proteases (IP) são proteínas que possuem a capacidade de inibir proteases específicas, inclusive de pragas e patógenos, por conta disso estão associadas à defesa de plantas. Esses inibidores também estão relacionados à regulação endógena de proteases relacionadas a processos fisiológicos vegetais (Cândido *et al.*, 2011). Os principais tipos de inibidores de proteases são os inibidores de proteases serínicas, inibidores de proteases cisteínicas, inibidores de proteases aspárticas e metalo proteases (Barrett, 2000).

Muitos inibidores de proteases de sementes têm sido estudados e suas toxicidades descritas contra insetos. Um inibidor de tripsina (TI) extraído de sementes de *Psoralea corylifolia* quando incorporado na dieta artificial do inseto *Bactrocera cucurbitae* mostrou efeito negativo no crescimento das larvas e aumento da mortalidade larval (Samiksha *et al.*, 2019). Katoch *et al.* (2015) mostraram que TIs extraídos de sementes de *Vigna umbellata* (feijão de arroz), quando adicionados à alimentação, causou a diminuição do peso larval, crescimento e da taxa de

sobrevivência de larvas de *Spodoptera litura*. O efeito tóxico dos inibidores de tripsina extraídos de sementes de *Vigna unguiculata* (inibidor de tripsina/quimiotripsina de *V. unguiculata* - BTCI) também foi observado quando adicionados à dieta de larvas de *Anthonomus grandis*. Na concentração de 100 µM, o BTCI causou 54 % de redução na massa larval e 65 % de mortalidade das larvas (Franco *et al.*, 2003). Estes inibidores de proteases também já se mostram tóxicos para outros insetos, e estudos mostraram que inibidores de tripsina extraídos de sementes de *Clitoria fairchildiana* foram capazes de desativar enzimas digestivas tanto de *D. saccharalis* quanto de *Heliothis virescense* (Dantzger *et al.*, 2015). Inibidores de tripsina também já foram identificadas em cotilédones de sementes de *P. vulgaris* (Alves *et al.*, 2010).

Os inibidores de proteases cisteínicas também estão relacionados com a defesa de plantas contra insetos. Sabe-se que muitas espécies de coleópteros apresentam proteases cisteínicas como as principais responsáveis por proteólise em seu intestino (Michaud et al., 1994). Dessa forma os inibidores de proteases cisteínicas possuem a capacidade de se ligar e inibir a ação dessas enzimas. Estudos mostraram que inibidores de proteases cisteínicas incluídos na alimentação do gorgulho da alfafa, Hypera postiça, foram tóxicos para esses insetos, reduzindo a sobrevivência larval (Elden, 2000). Inibidores de proteases cisteínicas de V. unguiculata produzidos em Escherichia coli, inibiram proteases encontradas no intestino de C. maculatus e Z. subfasciatus, mas os ensaios in vivo em C. maculatus não mostraram alterações, indicando uma possível resistência desses insetos aos inibidores de proteases cisteínicas testados (Monteiro Junior et al., 2017). Um estudo recente mostrou que um inibidor de protease cisteínica, extraído de sementes de Enterolobium contortisiliquum, incorporado na dieta artificial de larvas de C. maculatus em concentrações de 0,5 e 1 % provocou um efeito negativo no desenvolvimento larval e uma redução de 87 e 92 %, respectivamente, na massa das larvas (Nunes et al., 2020).

Os inibidores de α-amilases também são proteínas multifuncionais que têm sido relacionadas com a regulação endógena de amilases vegetais e também com a defesa de plantas. Alguns autores sugerem que as propriedades inseticidas dos

inibidores de α-amilases estão relacionadas com sua capacidade de interagir e inibir a atividade de amilases digestivas dos insetos, entretanto insetos com amilases resistentes aos inibidores de α-amilases já foram descritos (Moreno e Chrispeels, 1989; Kluh *et al.*, 2005). Ensaios utilizando inibidores de α-amilases de *P. vulgaris* na alimentação de larvas do inseto *Tribolium castaneum* mostraram interferência no desenvolvimento larval e diminuição na massa das larvas (Kluh *et al.*, 2005). Estudos mostram que outros inibidores de α-amilase de *P. vulgaris* também se apresentaram eficazes contra amilases intestinais de *Callosobruchus chinensis* e *Spodoptera littoralis* (Gupta *et al.*, 2014). Atividades inibitórias de α-amilase de *P. vulgaris* também foram descritas em *Callosobruchus maculatus*, *Diabrotica virgifera virgifera*, *Hypothenemus hampei*, *T. molitor* (Tyiagi *et al.*, 2014) e em fungos, como *Kluyveromyces lactis* e *Saccharomyces cerevisiae* (Brain-Isasi *et al.*, 2017).

As quitinases são hidrolases que clivam as ligações glicosídicas (β -1 \rightarrow 4) da molécula de quitina e têm sido relacionadas à defesa de plantas contra insetos e fungos (Singh et al., 2014; Uzma-Jalil et al., 2015). As quitinases estão presentes em muitos organismos, como bactérias, fungos, plantas, insetos e outros animais (Oyeleye e Normi, 2018). A toxicidade das quitinases para insetos, tem sido descrita em vários artigos. Quitinases do tegumento da semente de soja (Glycine max), quando adicionadas a dieta do inseto *C. maculatus*, reduziu a sobrevivência e a massa larval em cerca de 77 % e 60 %, respectivamente. O inseto alimentado com a quitinase marcada com FITC mostrou fluorescência no intestino e nas fezes (Silva et al., 2018). Uma quitinase isolada de sementes de feijão de corda também foi tóxica para C. maculatus, afetando significativamente a massa larval (Gomes et al., 1996). Recentemente uma fração contendo vicilinas e quitinases, isoladas de sementes resistentes de V. unquiculata cv. BRS xiquexique foi toxica para o inseto e relacionada com a resistência que essas sementes apresentam para *C. maculatus* (Ferreira *et al.*, 2021). Quitinases de plantas também já foram descritas contra fungos e outras pragas, sua ação de defesa foi relacionada com sua capacidade de degradar estruturas quitinosas presentes nessas pragas e patógenos (Uzma-Jalil et al., 2015; Oyeleye e Normi, 2018). Recentemente, Sinelnikov et al. (2021) mostraram que quitinases extraídas de *Drosera capensis* apresentaram altas propriedades fungicidas ao fungo Parastagonospora nodorum. Dessa forma, muitos estudos apontam o potencial das quitinases para biocontrole de fungos e insetos (Nagpure *et al.,* 2014; Da Silva e Santos, 2020).

2. OBJETIVOS

2.1. Objetivo geral

Avaliar a toxicidade de sementes dos genótipos L7 e L8 de *Phaseolus vulgaris* para o inseto *Callosobruchus maculatus*.

2.2. Objetivos específicos

- Avaliar o desenvolvimento do inseto durante a infestação de sementes artificiais contendo as farinhas dos cotilédones dos genótipos, avaliando a oviposição, penetração, eclosão e o desenvolvimento das larvas;
- Identificar, por proteômica comparativa, as proteínas presentes nos cotilédones das sementes dos genótipos;
- Isolar frações proteicas dos cotilédones das sementes e avaliar a toxicidade para o inseto;
- Avaliar alterações nos parâmetros de desenvolvimento e nos níveis de proteínas, glicose, colesterol, triacilglicerois e das enzimas amilases, lipases e proteases cisteínicas em larvas desenvolvidas nas sementes artificiais;

3. METODOLOGIA

3.1. As sementes

As sementes de Phaseolus vulgaris

As sementes dos genótipos de *P. vulgaris* utilizadas nesse trabalho foram cedidas pelo Prof. Geraldo de Amaral Gravina do Centro de Ciências e Tecnologias Agropecuárias - CCTA/UENF. As sementes são provenientes do Programa de Melhoramento do feijão de vagem ou feijão comum da Universidade Estadual do Norte Fluminense Darcy Ribeiro. Para armazenamento, as sementes foram acondicionadas em freezer em frascos fechados. Nesse trabalho foram usados dois genótipos: o UENF 7-6-6 (L7) e o UENF 7-7-7 (L8).

As sementes de Vigna unguiculata

As sementes de *V. unguiculata*, cv fradinho, foram obtidas comercialmente em mercados da cidade de Campos dos Goytacazes, RJ. As sementes foram congeladas por 5 dias, secas em estufa a 36°C por 24 h e posteriormente guardadas em temperatura ambiente. Essas sementes são usadas para a manutenção diária da colônia dos insetos e para a obtenção de farinhas de cotilédones usadas na confecção das sementes artificiais.

3.2. O inseto Callosobruchus maculatus

Os insetos foram obtidos de uma colônia mantida pelo nosso grupo de pesquisas, no Laboratório de Química e Função de Proteínas e Peptídeos do Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro. Os insetos são criados em sementes de *V. unguiculata* (cv fradinho). As sementes foram transferidas para frascos de vidro com tampas de alumínio com pequenos furos e infestadas com fêmeas dos insetos de dois dias de idade. Os frascos contendo as sementes e os insetos foram acondicionados à temperatura de 28 °C, no escuro em estufa B.O.D. (Biochemical Oxygen Demand). A infestação ocorreu por 2 h e após esse período as fêmeas foram retiradas dos frascos. As sementes permaneceram na estufa até a emergência dos adultos, cada ciclo dura de 25-30 DAO (dias após a oviposição). Esses novos insetos foram usados para a manutenção da colônia e para experimentos de sementes artificiais.

3.3. Análises da toxicidade das farinhas das sementes para o inseto

3.3.1. Sementes artificiais contendo farinha dos cotilédones

Para avaliar a presença de compostos tóxicos nos cotilédones, foram feitas sementes artificiais segundo metodologia descrita por Macedo *et al.*, (1993). As sementes foram descascadas e os cotilédones foram triturados para obtenção da farinha. As sementes artificiais foram preparadas com farinha de cotilédones *de V. unguiculata* (cv. Fradinho) misturadas com concentrações diferentes das farinhas dos cotilédones dos genótipos, sendo 2, 5 e 10 % para L7 e 5, 10 e 20 % para L8. Cada semente foi constituída de um total de 400 mg, sendo resultado da mistura de farinha de cotilédones de *V. unguiculata* (cv. Fradinho) com farinha dos cotilédones dos

genótipos. Os 400 mg de farinha foram colocados em uma matriz de bombê (molde cilíndrico) e submetidos a uma prensagem utilizando uma prensa balancim manual (aplicador/ prensa de botão). Após prensagem as sementes foram retiradas do molde cilíndrico e colocadas em frascos de vidro e infestadas com fêmeas de 2 dias de idade (3 sementes/25 fêmeas). A oviposição durou 30 min e após esse período os ovos foram contados e o excesso de ovos foi retirado, deixando apenas três ovos por semente artificial. O desenvolvimento do inseto foi observado até 20 DAO, sendo no 6° DAO observada a eclosão larval e no 20° DAO observou-se a taxa de sobrevivência, massa e tamanho larval. Foram feitas triplicatas para cada experimento.

3.3.2. Avaliação dos parâmetros morfológicos de desenvolvimento das larvas

A eclosão larval foi observada diariamente usando um estereomicroscópio até o 6 DAO, de acordo com De Sá *et al.* (2018). A percentagem de eclosão larval foi calculada baseada no número total de larvas que penetrou a semente. A penetração larval é identificada quando o ovo fica completamente branco, resultado da deposição de farinha pela larva durante a escavação e penetração nos cotilédones (De Sá *et al.*, 2018). Os ovos não eclodidos permanecem transparentes.

No 20º DAO, as sementes foram abertas e as larvas foram retiradas para análise da sobrevivência, massa e tamanho larval. As larvas encontradas nas sementes artificiais contendo as farinhas de cotilédones dos genótipos L7 e L8 nas concentrações de 2, 5 e 10 % e 5, 10 e 20 %, respectivamente, foram fotografadas, pesadas e medidas com auxílio do programa ImageJ v.1.45s.

3.4. Análise da proteômica comparativa dos cotilédones dos genótipos L7 e L8 de *P. vulgaris*

3.4.1. Extração proteica

As proteínas das farinhas dos cotilédones foram extraídas com tampão Tris-HCl, 20mM, pH 6,8; contendo de ditiotreitol (DDT) 1 %, SDS 0,1 % e fluoreto de fenilmetanossulfonil (PMSF) 0,1 %. As amostras foram submetidas à agitação por 30 min, centrifugadas a 16.000 x g por 10 min a 4°C, os sobrenadantes foram coletados

e as concentrações de proteína foram medidas usando um kit Quant 2-D. As análises foram realizadas em três réplicas biológicas para cada farinha.

3.4.2. Digestão proteica

As proteínas foram precipitadas com metanol/clorofórmio de acordo com Nanjo et al., (2012). As proteínas precipitadas foram ressuspensas em solução de ureia 7 M/Tioureia 2 M, as amostras foram preparadas de acordo com Burrieza et al., (2019) utilizando filtro (FASP). A integridade dos filtros foi verificada de acordo com Hernandez-Valladares et al., (2016). Alíquotas das amostras foram adicionadas às unidades de filtro Microcon-30 kDa (Millipore) (Lipecka et al., 2016), lavadas com 200 μL de bicarbonato de amônio 50 mM (solução A), centrifugadas a 10.000 x g por 15 min a 25°C e adicionados 100 µL de DTT 50 mM refrigerado (solução A). As amostras foram agitadas e incubadas por 20 min a 60°C, adicionados 200 µL de ureia 8 M e bicarbonato de amônio 50 mM e centrifugadas por 15 min. As proteínas foram alquiladas com 100 µL de iodoacetamida 50 mM refrigerado (solução B), agitadas e incubadas por 20 min a 25°C no escuro, em seguida foram adicionados 200 µL de solução B e centrifugados por 15 min (repetindo-se essa etapa duas vezes). Para a digestão, 50 µL da solução das proteínas foram misturadas com 25 µL de RapiGest 0,2 % (v/v) (Waters, Milford, CT, EUA) e 25 µL de solução de tripsina (1:100 enzimas: proteína). As misturas foram agitadas suavemente e incubadas por 16 h a 37°C. Para a eluição dos peptídeos os filtros foram transferidos para novos microcubos e centrifugados durante 10 min, adicionados 50 µL de solução A e centrifugados por 15 min. A precipitação do RapiGest e a inibição da tripsina, foram feitos com 5 μL de ácido trifluoroacético 15 %, sob agitação e incubação por 30 min a 37°C. As amostras foram centrifugadas durante 15 min, os sobrenadantes foram recolhidos e secos a vácuo. Os peptídeos foram ressuspensos em 100 µL de bicarbonato de amônio 50 mM, acetonitrila 5 % e ácido fórmico 0,1 %. Os peptídeos foram quantificados utilizando o NanoDrop 2000c (Thermo Fisher Scientific).

3.4.3. Análise das proteínas por espectrometria de massas

A espectrometria de massas foi realizada utilizando um UPLC de nanoAcquity acoplado a um espectrômetro Q-TOF SYNAPT G2-Si (Waters, Manchester, UK),

sendo feitas três corridas de 1 µg de proteína digerida para cada amostra. As amostras foram separadas no nanoAcquity UPLC M-Class Symmetry em coluna C18 de 5 µm (180 μm × 20 mm) a 5 μL/min durante 3 min e depois na coluna de fase reversa analítica nanoAcquity M-Class HSS T3 1,8 µm (75 µm × 150 mm) a 400 nL/ min. Para a eluição dos peptídeos foi utilizado como fase móvel A água (Tedia, Fairfield, Ohio, EUA) e 0,1 % de ácido fórmico e fase móvel B acetonitrila e 0,1 % de ácido fórmico. A corrida teve duração de 117 min, iniciando a eluição com 5 % de B, aumentando para 40 % de B para até 91,12 min, 99 % de B até 95,12 min, sendo mantidos os 99 % de B até 99,12 min. A concentração de B foi diminuindo para 5 % até 101,12 min, sendo mantido até o final da corrida. A espectrometria de massa seguiu os seguintes parâmetros: modo positivo e de resolução (modo V), 35.000 FWHM, com mobilidade iônica; (HDMSE) e em modo de aquisição independente de dados (DIA); a separação da mobilidade iónica utilizou uma rampa de velocidade da onda IMS começando com 800 m s -1 e terminando com 500 ms-1; a energia de colisão de transferência aumentou de 25 V para 55 V no modo de alta energia; tensões cone e capilares de 30 V e 3000 V, respectivamente; nano fluxo de gás de 0,5 bar e gás de purga de 150 l h -1; e uma temperatura de fonte de 100 °C. Nos parâmetros TOF, o tempo de varredura foi definido em 0,6 seg no modo contínuo com um intervalo de massa de 50 a 2000 Da. Foi utilizado como calibrador externo o [Glu1]-fibrinopeptídeo B humano a 100 fmol µL-1 e a aquisição de massa de bloqueio foi realizada a cada 30 seg. A aquisição do espectro de massa foi realizada pelo software MassLynx v4.0.

3.4.4. Análise dos dados da proteômica

O processamento dos espectros e banco de referência foram realizados utilizando o software ProteinLynx Global SERVER (PLGS) v.3.02 (Waters) e o workflow foi com o software ISOQuant (Distler et al., 2014, 2016). Na análise do PLGS foram utilizados os seguintes parâmetros: Apex3D de 150 contagens como limite de baixa energia, 50 contagens como limite de energia elevada e 750 contagens como limite de intensidade; uma clivagem perdida; no mínimo três fragmentos de íon por peptídeos; no mínimo sete fragmentos de íon por proteína; no mínimo dois peptídeos por proteína; modificações fixas como carbamidometil (C) e modificações variáveis como oxidação (M) e fosforil (STY); a taxa de falsas descobertas (FDR) para

identificação de peptídeos e proteínas foi ajustada para um máximo de 1 %, com um comprimento mínimo de seis aminoácidos. Os dados proteômicos foram processados no banco de dados *Phaseolus vulgaris* L., UNIPROT (https://www.uniprot.org).

A quantificação foi realizada usando o software ISOQuant v.1.7 usando configurações e algoritmos descritos anteriormente (Distler *et al.*, 2014, 2016). Foi utilizada uma normalização multidimensional que corrige as intensidades de pico com base nos domínios de intensidade e tempo de retenção, resumidamente, a análise incluiu alinhamento no tempo de retenção, e o exato tempo de retenção de massa (EMRT). A quantificação sem marcação foi estimada usando a abordagem de quantificação TOP3. Seguido pelo processo de normalização multidimensional implementado no ISOQuant (Distler *et al.*, 2014). Depois da análise dos dados no ISOQuant, para assegurar a qualidade dos resultados, definimos os parâmetros de refinamento: apenas proteínas presentes nas três repetições biológicas foram consideradas para análise.

As proteínas não caracterizadas pelo software OmicsBox foram identificadas utilizando suas sequências em bancos de dados do NCBI (https://blast.ncbi.nlm.nih.gov) A partir das sequências das proteínas foram feitos blasts para encontrar as regiões de similaridade entre as proteínas não caracterizadas e proteínas já caracterizadas em outras espécies de plantas a fim de definir a maior significância estatística. Foram consideradas as proteínas vegetais já caracterizadas com maior *score* e maior cobertura.

3.5. Isolamento das frações proteicas por cromatografia de troca iônica

Proteínas das farinhas dos cotilédones dos genótipos L7 e L8 foram extraídas com tampão Tris HCl 0,1 M pH 8 por 1 h a 4 °C na proporção 1 g para 20 mL de tampão. O material foi centrifugado e as proteínas do sobrenadante usadas para o fracionamento por cromatografia de troca iônica DEAE-Celulose (trocadora de ânions).

A coluna foi montada em uma coluna de vidro possuindo 20 cm de comprimento por 2,5 cm de diâmetro. O pó da resina foi inchado em água destilada por 24 h, ativada com uma lavagem sequencial com 50 mL de NaOH 0,1 M, lavagem com água até o retorno a pH neutro, lavagem com 50 mL de HCL 0,1 M, seguida por

água destilada. A coluna foi equilibrada com 50 mL de tampão Tris HCl 0,1 M pH 8 e depois a amostra (20 mL) foi aplicada na coluna, sob um fluxo de 1.3 mL/min. Foram coletadas frações de 2,6 mL/tubo e a absorbância foi medida a 280 nm. O material não retido foi lavado com aproximadamente 500 ml do tampão Tris HCl 0,1 M pH 8 e as frações retidas foram eluídas com três concentrações de NaCl 0,1, 0,5 e 1 M, com volumes de aproximadamente 220, 290 e 150 mL, respectivamente para cada concentração.

Os tubos coletados de maior absorbância, eluídos em Tris HCl e NaCl 0,5 M, foram dialisados contra água e liofilizados para obtenção de um pó. As frações não retidas, obtidas por lavagem com Tris HCl foram denominadas NR (NR-L7 e NR-L8) e as frações retidas, eluídas com NaCl 0,5 M foram denominadas R (R-L7 e R-L8). As demais frações não foram usadas nesse trabalho devido ao baixo rendimento.

3.6. Visualização das proteínas por eletroforese em gel de poliacrilamida SDS-PAGE

O perfil proteico das amostras obtidas na cromatografia foi visualizado por eletroforese em gel de poliacrilamida 12 %, na presença de SDS (Laemmli, 1970). Um total de 1 mg de cada fração foi dissolvido em 100 µL de tampão de amostra 4x concentrado (composto por 3,8 ml de água destilada + 1 ml de Tris HCl 0,5 M, pH 6,8, + 0,8 ml de glicerol + 1,3 ml de SDS 10% + 0,4 ml de azul de bromofenol 1%). Um volume de 3 µL da solução das frações foi diluído com 17 µL de tampão de amostra 4x concentrado e aplicados no gel. A eletroforese foi processada por aproximadamente 2 h em corrente constante de 100 V. O gel foi corado com uma solução de Coomassie Brilhante Blue R 0,25 % em metanol, ácido acético e água destilada (5:1:1 v/v/v) durante 16 h, e descorado por uma solução composta por 35 % de metanol e 10 % de ácido acético em água. Após descorado, o gel foi fotografado, bandas majoritárias encontradas foram cortadas, armazenadas em tubos em freezer e posteriormente serão encaminhadas para identificação por espectrometria de massas no Laboratório de Toxinologia da FIOCRUZ-RJ.

3.7. Análises da toxicidade das frações para o inseto

O pó obtido das frações após liofilização foi utilizado para avaliação da toxicidade para o inseto por sistemas de sementes artificiais na concentração de 2 %. As sementes foram confeccionadas de acordo com o item 3.3.1. As sementes artificiais, contendo as frações NR e R de cada genótipo, foram infestadas com fêmeas de dois dias de idade por 24 horas. Após esse período o excesso de ovos foi removido, foi avaliada a eclosão larval no 6º DAO e a sobrevivência larval no 20º DAO.

As larvas encontradas nas sementes artificiais no 20º DAO foram pesadas, fotografadas para a determinação do tamanho e submetidas a avaliação de seus parâmetros morfológicos de acordo com item 3.4.

3.8. Extração e análises bioquímicas das larvas

As larvas encontradas nas sementes artificiais foram maceradas e extraídas em solução salina (NaCl 0,15 M), na proporção de 50 μL de solução por larva. O material foi mantido sob agitação constante a 4 °C durante 30 min. Após esse período as amostras foram centrifugadas a 10.000 x g por 5 min a 4 °C e o sobrenadante foi recolhido e estocado a -20 °C. O sobrenadante obtido foi utilizado para determinação de glicose, proteínas totais e atividade das enzimas lipase, α-amilase e proteases cisteínicas.

Os precipitados obtidos das larvas foram utilizados para extração de triacilglicerois e colesterol. Os precipitados foram dissolvidos com Tween 20 0,1% (12,5 µL por larva) extraídos sob agitação a 4 °C durante 30 min, centrifugado a 10.000 x g por 5 min a 4 °C e o sobrenadante foi utilizado para determinação de triacilglicerois e colesterol.

3.8.1. Quantificação de glicose

Para verificar a concentração de glicose presente nas larvas foi utilizado o kit Glicose Monoreagente da Bioclin, seguindo as instruções do fabricante. O kit é composto pelos reagentes: Reagente N° 1 (Reagente enzimático) que contém tampão, fenol, 4-aminoantipirina, glicose oxidase, peroxidase, estabilizante, surfactante e conservante; e do Reagente N° 2 (Padrão) constituído de glicose e conservante.

O ensaio foi feito em microtubos utilizando 2 μ L do extrato das larvas (extraído em solução salina) + 200 μ L do Reagente 1 e para o Branco, 2 μ L de solução salina (NaCl 0,15 M) + 200 μ L do Reagente 1. O padrão do kit foi feito utilizando 2 μ L do Reagente 2 + 200 μ L do Reagente 1 e foi utilizado para o cálculo de determinação de glicose. O período de incubação do ensaio foi de 10 min em banho-maria a 37 °C. Em seguida, 200 μ L foram transferidos para uma microplaca de 96 poços e a leitura foi feita em comprimento de onda de 492 nm. O ensaio foi feito em triplicata. Os cálculos foram feitos seguindo o método indicado pelo kit do ensaio.

3.8.2. Quantificação de proteínas totais solúveis

Para dosagem de proteínas totais solúveis foi utilizado o método do ácido bicinconínico BCA (Sigma Aldrich), seguindo as instruções do fabricante. Uma curva padrão de albumina sérica bovina (BSA), na proporção de 1 mg/ mL em água destilada, foi feita para o cálculo da quantidade de proteínas totais presentes nas amostras. A curva foi feita em quantidades crescentes (2, 4, 6, 8 e 10 μL) do estoque de BSA + 200 μL da solução de BCA + água destilada para completar o volume final de 210 μL. Para o ensaio foi feito um estoque de 2 μL dos extratos (extraído em solução salina) + 18 μL de água destilada (1:9). O ensaio foi feito em microplaca de 96 poços, usando 10 μL do estoque dos extratos + 200 μL da solução de BCA. O ensaio foi incubado por 30 min em estufa a 37° C. A leitura foi feita em comprimento de onda a 540 nm. O ensaio foi feito em triplicata e os cálculos de quantidade de proteínas totais foram feitos usando os dados da curva padrão (Smith *et al.*, 1985)

3.8.3. Quantificação de triacilglicerois

Para determinar a concentração de triacilglicerois foi utilizado o kit Triglicérides Monoreagente da Bioclin, seguindo as instruções de uso do fabricante. O kit é composto pelos reagentes: Reagente Nº 1 (reagente enzimático) constituído por tampão, 4-clorofenol, lipase lipoprotéica, glicerol kinase, peroxidase, glicerol-3-fosfato oxidase, 4-aminoantipirina, ATP, ativador, estabilizante, surfactante e conservante; e Reagente Nº 2 (Padrão) que contém triglicérides e diluente.

O ensaio foi feito em microtubos utilizando 1 μ L de extrato (extraído do precipitado em Tween 20 0,1 %) + 1 μ L de Tween 20 0,1 % + 200 μ L do Reagente 1

e para o Branco, 2 μ L Tween 20 0,1 % + 200 μ L do Reagente 1. O padrão do kit foi feito utilizando 2 μ L do Reagente 2 + 200 μ L do Reagente 1 e foi utilizado para o cálculo de determinação de triacilglicerois. O período de incubação do ensaio foi de 10 min em banho-maria a 37 °C. Em seguida, 200 μ L foram transferidos para uma microplaca de 96 poços e a leitura foi feita em comprimento de onda a 500 nm. O ensaio foi feito em triplicata e os cálculos foram feitos seguindo o método indicado pelo kit do ensaio.

3.8.4. Quantificação de Colesterol

O colesterol foi quantificado utilizando o kit Colesterol Monoreagente da Bioclin, seguindo as instruções do fabricante. O kit é composto pelos reagentes: Reagente Nº 1 (reagente enzimático) constituído de tampão, fenol, 4-aminoantipirina, colesterol oxidase, lipoproteína lipase, peroxidase, quelante, surfactantes, estabilizantes e conservantes; Reagente Nº 2 (Padrão) que contém colesterol, solubilizantes, surfactante e estabilizante.

O ensaio foi feito em microtubos utilizando 2 μL de extrato (extraído do precipitado em Tween 20 0,1%) + 200 μL do Reagente 1 e para o Branco, 2 μL Tween 20 0,1 % + 200 μL do Reagente 1. O padrão do kit foi feito utilizando 2 μL do Reagente 2 + 200 μL do Reagente 1 e foi utilizado para o cálculo de determinação de colesterol. O período de incubação do ensaio foi de 10 min em banho-maria a 37 °C. Em seguida, 200 μL foram transferidos para uma microplaca de 96 poços e a leitura foi feita em comprimento de onda a 500 nm. O ensaio foi feito em triplicata e os cálculos foram feitos seguindo o método indicado pelo kit do ensaio.

3.8.5. Determinação da atividade de α-amilase

Para determinar a atividade de α-amilase nas larvas foi utilizado o kit Amilase Monoreagente da Bioclin, seguindo as instruções de uso do fabricante. O kit é composto pelos reagentes: Reagente Nº 1 (Substrato) que contém: amido, tampão fosfato (pH 7,0), estabilizante e conservante; e Reagente Nº 2 (Reagente de Cor) que é uma solução estoque de Iodo. O reagente Nº 2 foi usado para preparar o reagente de trabalho constituído de 5 mL do reagente Nº 2 + 45 ml de água destilada.

Para o ensaio foram colocados 100 μL do reagente 1 em todos os tubos a serem utilizados. Em seguida os tubos foram colocados em banho-maria a 37 °C por 12 min. Após esse período, foram adicionados 2 μL do extrato larval (extraído em solução salina) nos tubos referente as amostras e 2 μL de solução salina (NaCl 0,15 M) no tubo referente ao padrão. Os tubos foram novamente colocados em banhomaria a 37 °C por 7,5 min e em seguida adicionados 100 μL do reagente de trabalho + 800 μL de água destilada. Um volume de 200 μL foi transferido para uma microplaca de 96 poços e a leitura foi feita em comprimento de onda de 630 nm. O ensaio foi feito em triplicata. Os cálculos foram feitos seguindo o método indicado pelo kit do ensaio. De acordo com o kit, uma unidade de enzima é a quantidade que hidrolisa totalmente 10 mg de Amido em 30 minutos à 37°C.

3.8.6. Determinação da atividade de proteases cisteínicas

Para verificar a atividade de protease cisteínica presente nas larvas, foi feito um ensaio seguindo metodologia desenvolvida por Michaud et al. (1994), utilizando azocaseína como substrato para a enzima. A azocaseína foi preparada na concentração de 1 % em tampão citrato-fosfato (citrato de sódio 100 mM, fosfato de sódio monobásico 100 mM, Triton X-100 0,1 %, DTT 1,5 mM, pH 5,6). Para o cálculo de atividade enzimática foi feita uma curva padrão de papaína, na proporção de 1 mg para 2 mL de tampão citrato-fosfato. A curva foi feita em quantidades crescentes (1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 e 22) da papaína + 80 µL da solução de azocaseína + tampão citrato-fosfato para completar 120 µL de volume final. Nos tubos do ensaio foram colocados 10 μL dos extratos das larvas (extraído em solução salina) + 30 μL tampão citrato-fosfato + 80 µL de azocaseína. O ensaio foi incubado por 1 h em banhomaria a 37° C. Após, foram adicionados 300 µL de ácido tricloroacético (TCA) 10% para parar a reação. As amostras foram submetidas à centrifugação por 5 min a 10.000 x g e em seguida 350 µL de cada sobrenadante foram transferidos para outros microtubos e adicionados 300 µL de NaOH 1 M. Logo após 300 µL foram transferidos para uma microplaca de 96 poços e a leitura foi feita em comprimento de onda a 440 nm. O ensaio foi feito em triplicata e os cálculos de atividade de protease cisteínica foram feitos levando em consideração os valores de absorbância da curva padrão.

3.8.7. Determinação da atividade de lipases

Para verificar a atividade de lipases das larvas foi utilizado o kit Lipase Monoreagente da Bioclin, seguindo as instruções de uso do fabricante. O kit é composto pelos reagentes: Reagente N° 1 (Tampão) – que contém Tris (hidroximetilamino metano) pH 8,5; Reagente N° 2 (Inibidor Enzimático) constituído de fenilmetil sulfonil fluoreto e solubilizante; Reagente N° 3 (Reagente de Cor) que contém DTNB (ácido ditionitrobenzóico), acetato de sódio e estabilizador; Reagente N° 4 (substrato) contendo tiobutirato ditiopropanol e surfactante; e Reagente N°5 constituído de acetona P.A.

O ensaio foi feito em microtubos utilizando 5 μ L do extrato larval (extraído em solução salina) + 100 μ L do Reagente 1 + 5 μ L do Reagente 2 + 10 μ L do Reagente 3. O Branco foi composto de 5 μ L de NaCl 0,15 M + 100 μ L do Reagente 1 + 5 μ L do Reagente 2 + 10 μ L do Reagente 3. O controle foi feito utilizando 5 μ L do extrato larval + 100 μ L do Reagente 1 + 10 μ L do Reagente 3 e foi utilizado para o cálculo de determinação de lipase. Ensaio foi incubado em banho-maria a 37 °C por 2 min. Após foram adicionados 10 μ L do Reagente 4 nos tubos ensaio e 10 μ L de salina no tubo referente ao controle. Em seguida, o material foi incubado novamente em banho-maria a 37 °C por 30 min. Após o tempo, foram colocados 200 μ L do Reagente 5 em todos os tubos, deixado em repouso por 3 min e centrifugado a 3500 x g por 5 min. Em seguida, 200 μ L do sobrenadante foram transferidos para uma microplaca de 96 poços e a leitura foi feita em comprimento de onda de 405 nm. O ensaio foi feito em triplicata. Os cálculos foram feitos seguindo o método indicado pelo kit do ensaio.

3.9. Análises estatísticas

Todos os experimentos foram feitos em triplicatas independentes. As médias e desvio padrão foram calculados. A análise de variância (ANOVA) (P < 0.05) seguida pelo teste de Turkey (P < 0.05), foram feitos a partir do GraphPad Prism 7.0 Bridge & Sawilowsky (1999).

4. RESULTADOS

4.1. Performance e sobrevivência do inseto *C. maculatus* em sementes artificiais contendo as farinhas dos cotilédones dos genótipos de *P. vulgaris*

4.1.1. Toxicidade das farinhas dos cotilédones do genótipo L7

Inicialmente foi avaliada a taxa de eclosão larval 6 DAO e foi observado que tanto nas sementes artificiais contendo a farinha dos cotilédones, nas concentrações de 2, 5 e 10 %, como nas sementes controle, a taxa de eclosão foi de 100 % (Dados não mostrados). A avaliação da sobrevivência larval, 20 DAO também não mostrou alteração significativa. Nas sementes controle e nas sementes contendo 2 % de farinha dos cotilédones do genótipo L7 a sobrevivência larval foi de 89 %, enquanto que nas sementes contendo 5 e 10 % do genótipo foi de aproximadamente 67 % (Fig. 3). A avaliação da massa das larvas mostrou que apesar de vivas, as larvas apresentaram uma grande variação em massas e tamanhos, principalmente a partir da concentração de 5 % (Fig. 4 e 5). Larvas alimentadas com concentrações de 5 e 10 % da farinha de L-7 apresentaram reduções de massas de 53 e 62 % respectivamente (Fig. 5A). A reduções nos tamanhos das larvas desenvolvidas nas sementes artificias foram respectivamente 31 e 34 % nas concentrações de 5 e 10 % (Fig. 5B).

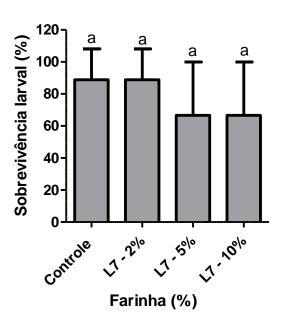


Figura 3 - Percentual de sobrevivência das larvas de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha dos cotilédones do genótipo L7 de *P. vulgaris*. Os experimentos foram feitos em triplicata independente e os resultados mostrados são as médias obtidas. A presença de letras iguais representa dados estatísticos iguais, de acordo com o teste de *tukey* (p < 0,05).

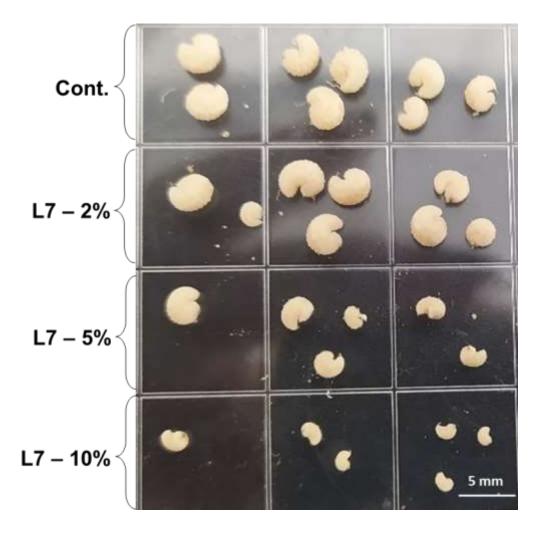


Figura 4 – Fotos das larvas de *C. maculatus* desenvolvidas nas sementes artificiais controle ou contendo 2, 5 e 10 % de farinha dos cotilédones do genótipo L7 de *P. vulgaris*. As larvas foram fotografadas 20 DAO (dias após a oviposição). Cada linha representa larvas crescidas em diferentes concentrações de farinha e nas colunas as larvas estão separadas de acordo com a quantidade encontrada em cada semente. Barra = 5 mm.

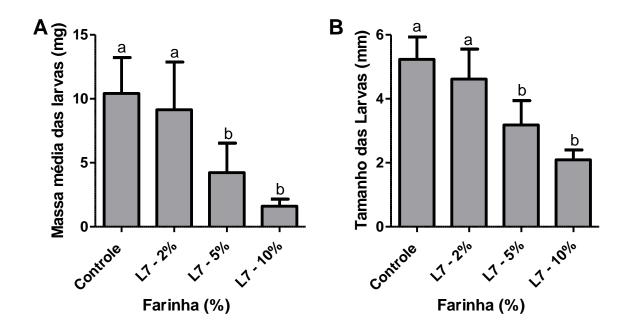


Figura 5 – Massa (A) e tamanho (B) das larvas de *C. maculatus* encontradas 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de *P. vulgaris*. O número de larvas analisadas foi de acordo com a quantidade de larvas encontradas em cada semente e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.1.2. Toxicidade das farinhas dos cotilédones do genótipo L8

Nas sementes artificiais contendo farinha de cotilédone do genótipo L8 nas concentrações de 5, 10 e 20 % os resultados mostraram não haver variação significativa na taxa de eclosão larval, indicando que todas as larvas foram capazes de penetrar nas sementes (Dados não mostrados). Passados 20 DAO, as sementes foram desfeitas para observação da sobrevivência larval e os resultados mostraram não haver diferença significativa entre o controle e as concentrações de 5 % e 10 % (Fig. 6). Entretanto nas sementes contendo 20 % de farinha do genótipo L8 apenas 23 % das larvas sobreviveram (Fig. 6). As larvas encontradas nas sementes artificiais contendo 5, 10 e 20 % de farinha do genótipo L8 apresentaram massas e tamanhos muito inferiores em relação às larvas controle (Fig. 7 e 8). As reduções das massas das larvas nas sementes contendo 5, 10 e 20 % foram 88, 95 e 97 % respectivamente (Fig. 8A), enquanto nos tamanhos foram 60 e 75 % respectivamente (8B).

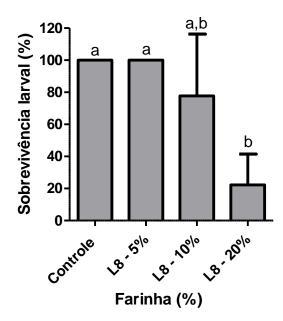


Figura 6 – Percentual de sobrevivência das larvas de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5, 10 e 20 % de farinha dos cotilédones do genótipo L8 de *P. vulgaris*. Os experimentos foram feitos em triplicata independente e os resultados mostrados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

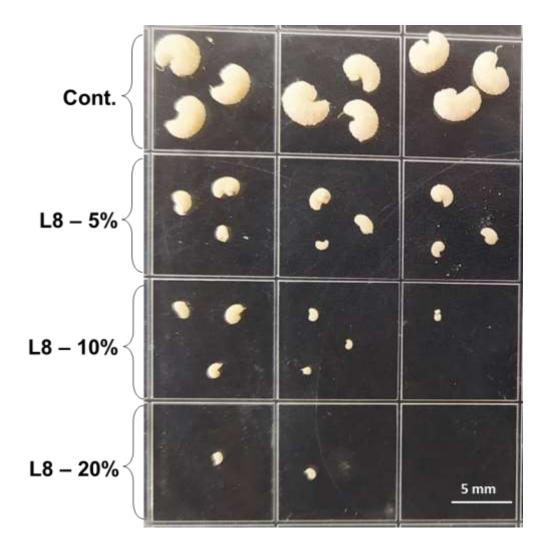


Figura 7 – Fotos das sementes e das larvas de *C. maculatus* nas sementes artificiais controle ou contendo 5, 10 e 20 % de farinha dos cotilédones do genótipo L8 de *P. vulgaris*. As larvas foram fotografadas 20 DAO (Dias após a oviposição). Cada linha representa larvas crescidas em diferentes concentrações de farinha e nas colunas as larvas estão separadas de acordo com a quantidade encontrada em cada semente. Barra = 5 mm.

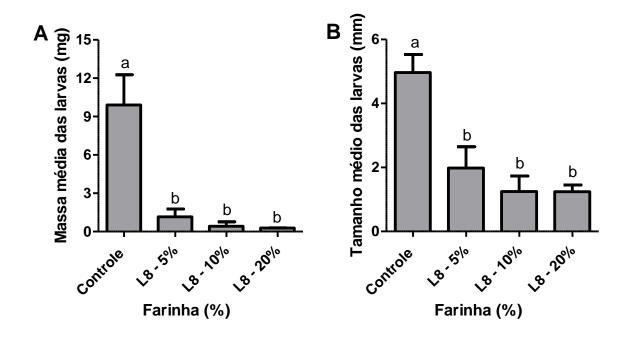


Figura 8 - Massa (A) e tamanho (B) das larvas de *C. maculatus* encontradas 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5, 10 e 20 % de farinha de cotilédone do genótipo L8 de *P. vulgaris*. O número de larvas analisado foi de acordo com a quantidade de larvas encontradas em cada semente e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.2. Análises bioquímicas das larvas de *C. maculatus* controle e alimentadas com 2, 5 e 10 % da farinha dos cotilédones do genótipo L7 de *P. vulgaris*

4.2.1. Quantificação de glicose

Nas análises da quantidade de glicose foi possível observar uma diminuição de 58 e 82 % na quantidade de glicose encontrada por larva de 20 DAO desenvolvidas nas sementes contendo 5 e 10 % das farinhas do genótipo L7 de *P. vulgaris* em relação às larvas controles. As larvas desenvolvias nas sementes controles e nas sementes contendo 2 % de farinha do genótipo L7 não mostraram diferença significativa na quantidade de glicose (Fig. 9A). Quando a quantidade de glicose foi analisada levando em consideração o peso da larva (mg de larva) observou-se que apenas as larvas das sementes contendo 10 % de farinha de L7 apresentaram um aumento significativo quando comparadas as larvas controle (Fig. 9B).

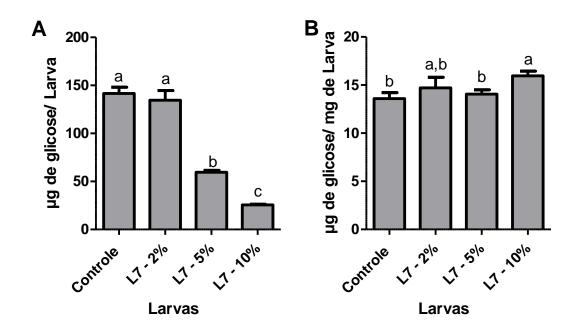


Figura 9 –Quantidade de glicose (μg) por larva (A) e quantidade de glicose (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.2.2. Quantificação de proteínas totais solúveis

Os resultados da determinação de proteínas totais solúveis por larva não mostraram uma variação estaticamente significativa entre as larvas controle ou desenvolvidas nas sementes contendo 2 e 5 % de farinha dos cotilédones do genótipo L7 (Fig. 10A). Entretanto nota-se uma redução de 82 % de proteína por larva desenvolvida nas sementes contendo 10 % da farinha (Fig. 10A). Quando analisada a quantidade de proteínas totais por mg de larva, nota-se um aumento de 55 % na quantidade de proteínas nas larvas das sementes 5 % em relação as larvas controle, entretanto a quantidade de proteínas totais nas larvas desenvolvidas nas sementes com 2 e 10 % de farinha não diferiram das larvas controle (Fig. 10B).

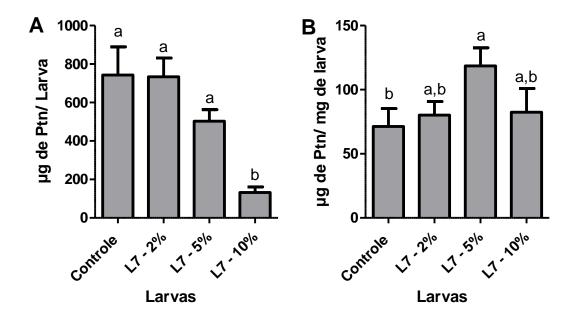


Figura 10 - Quantidade de proteínas totais solúveis (μg) por larva (A) e quantidade de proteínas totais solúveis (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.2.3. Quantificação de triacilglicerois

A quantidade de triacilglicerois por larva foi menor nas larvas desenvolvidas nas sementes artificiais contendo farinha na concentração de 10 %, em comparação com as larvas controle, com uma diminuição de 58 % (Fig. 11A). Quando analisada a quantidade de triglicérides por mg de larva, notou-se um aumento de 46 e 63 %, respectivamente, na quantidade desses lipídeos nas larvas desenvolvidas nas sementes artificiais contendo 5 e 10 % de farinha dos cotilédones do genótipo L7, em comparação com as larvas controle (Fig. 11B).

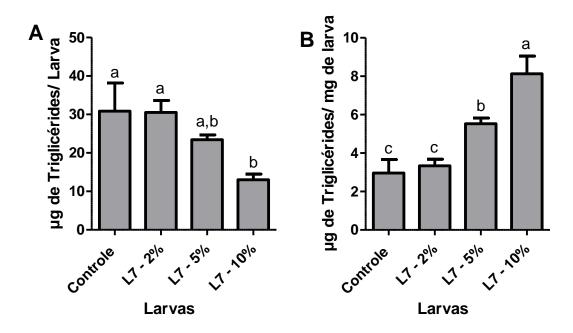


Figura 11 - Quantidade de triacilgliceróis (μg) por larva (A) e quantidade de triacilgliceróis (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10% de farinha de cotilédone do genótipo L7 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.2.4. Quantificação de colesterol

A quantidade de colesterol por larva não diferiu significativamente entre as larvas controle e as larvas que se desenvolveram nas sementes artificiais contendo 2, 5 e 10 % de farinha dos cotilédones do genótipo L7 de *P. vulgaris*. (Fig. 12A). No entanto, quando avaliamos a quantidade de colesterol por mg de larva, observa-se um aumento desse lipídeo nas larvas alimentadas com as farinhas, principalmente nas larvas desenvolvidas nas sementes artificiais contendo 10 % de farinha, onde o aumento foi mais expressivo, ficando 87 % maior em relação às larvas controle (Fig. 12B).

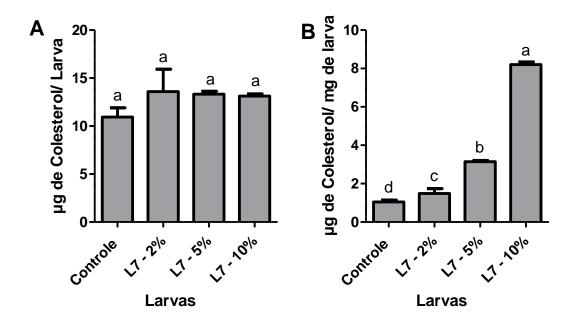


Figura 12 - Quantidade colesterol (μg) por larva (A) e quantidade de colesterol (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.2.5. Determinação da atividade de α-amilase

A atividade de amilase por larva não variou significativamente comparando as larvas controle ou desenvolvidas nas sementes artificiais com 2, 5 e 10 % de farinha de cotilédones do genótipo L7 (Fig. 13A). Analisando a atividade α -amilase considerando o peso das larvas, foi possível observar que as larvas desenvolvidas nas sementes artificiais contendo 5 e 10 % das farinhas apresentaram aumentos significativos na atividade da enzima. Esse aumento se aproxima de 80 % nas larvas desenvolvidas nas sementes com 10 %, quando comparadas com as larvas controle (Fig. 13B).

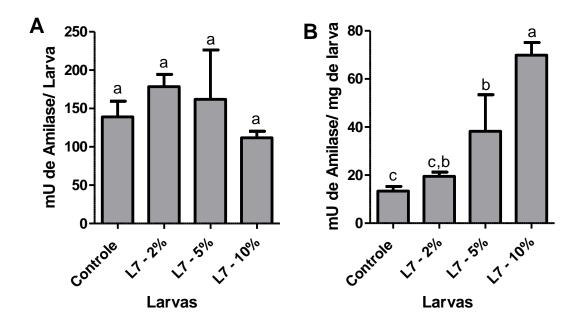


Figura 13 - O gráfico A representa a quantidade de amilase (mU) por larva e o gráfico B representa a quantidade de amilase (mU) por mg de larva de *C. maculatus* encontradas 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.2.6. Determinação da atividade de protease cisteínica

A atividade de protease cisteínica por larva se mostrou aumentada em todas as larvas desenvolvidas nas sementes artificiais contendo as farinhas de cotilédones do genótipo L7, quando comparadas com as larvas controle. Os aumentos observados variaram de 18 a 43 % (Fig. 14A). Quando analisada a atividade de protease cisteínica por mg de larva, foi observado aumento de mais de 76 % da atividade nas larvas desenvolvidas nas sementes artificiais contendo 5 e 10 % da farinha do genótipo (Fig. 14B).

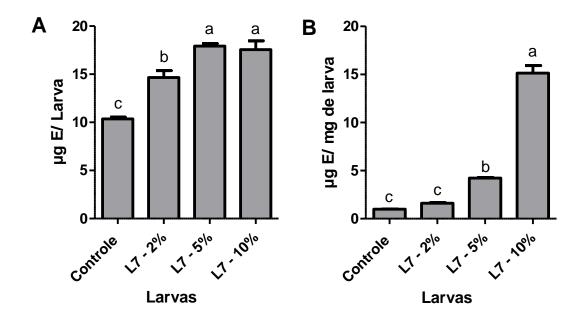


Figura 14 - Atividade de protease cisteínica (μg) por larva (A) e atividade de protease cisteínica (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de *P. vulgaris*. Os experimentos foram feitos em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.2.7. Determinação da atividade de lipases

A atividade de lipases se mostrou diminuída nas larvas desenvolvidas nas sementes artificiais contendo farinha de cotilédones na concentração de 5 e 10 % do genótipo L7, tanto quando analisadas por larva (Fig. 15A) como proporcional ao peso da larva (Fig. 15B). A redução da atividade de lipase por larva foi de 34, 86, e 96 %, enquanto que por mg de larva a redução na atividade dessa enzima foi de 24, 67 e 78 %, respectivamente, nas larvas desenvolvidas nas sementes artificiais contendo 2, 5 e 10 % de farinha do genótipo L7.

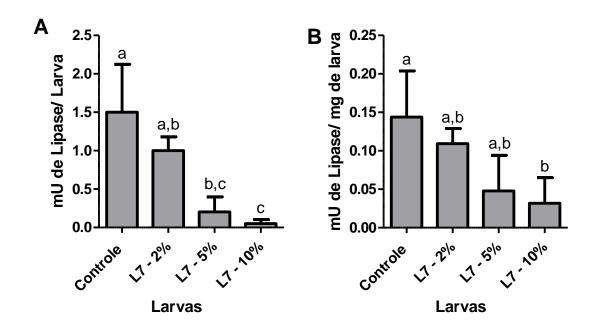


Figura 15 - Atividade de lipase (mU) por larva (A) e atividade de lipase (mU) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2, 5 e 10 % de farinha de cotilédone do genótipo L7 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.3. Análises bioquímicas das larvas de *C. maculatus* controle e alimentadas com 5 e 10 % da farinha dos cotilédones do genótipo L8 de *P. vulgaris*

Devido ao número pequeno de larvas e o tamanho reduzido, não foi possível realizar esses experimentos com as larvas encontradas nas sementes contendo 20 % da farinha.

4.3.1. Quantificação de glicose

A quantidade total de glicose/larva encontrada nas larvas 20 DAO, desenvolvidas nas sementes artificiais contendo 5 e 10 % de farinha diminuiu 58 e 82% a medida que a concentração de farinha aumentou (Fig. 16A). Entretanto, quando foi analisado a quantidade de glicose por mg de larva os resultados se mostraram inversos (Fig. 16B), mostrando a quantidade de glicose aumentou expressivamente nas larvas desenvolvidas nas sementes contendo farinha de L8, com um aumento maior que 77 %.

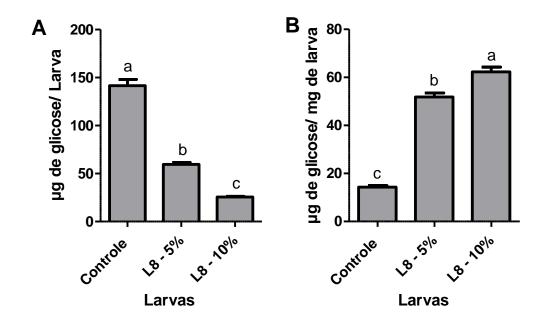


Figura 16 - Quantidade de glicose (μg) por larva (A) e quantidade de glicose (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.3.2. Quantificação de proteínas totais solúveis

Os resultados da determinação de proteínas por larva mostraram uma diminuição drástica, superior a 86 %, nas larvas desenvolvidas nas sementes contendo 5 e 10 % da farinha, quando comparadas as larvas controle (Fig. 17A). Ao analisar a quantidade de proteínas totais por mg de larva não foram observadas variações significativas entre as larvas dos diferentes tratamentos (Fig. 17B).

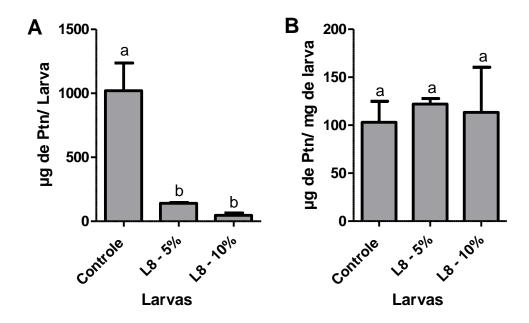


Figura 17 - Quantidade de proteínas totais solúveis (μg) por larva (A) e quantidade de proteínas totais solúveis (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (ρ < 0,05).

4.3.3. Quantificação de triacilglicerois

A quantidade de triacilglicerois por larva foi menor, inferior a 76 %, nas larvas desenvolvidas nas sementes contendo 5 e 10 % de farinha, quando comparadas as larvas controle (Fig. 18A). Comportamento inverso ao observado por mg de larva, onde notou-se que a quantidade de triacilglicerois foi superior em larvas crescidas em sementes artificiais contendo 5 e 10 % de farinha dos cotilédones do genótipo L8, com um aumento de 68 e 84 %, respectivamente, quando comparado ao controle (Fig. 18B).

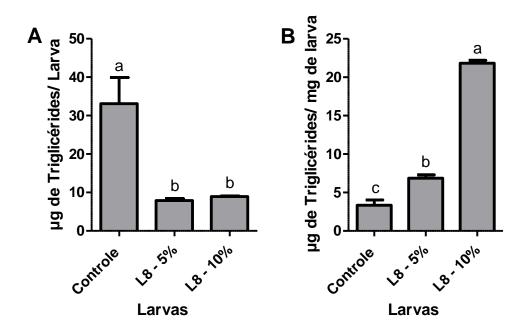


Figura 18 - Quantidade de triacilglicerois (μg) por larva (A) e quantidade de triacilglicerois (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.3.4. Quantificação de colesterol

A concentração de colesterol por larva não apresentou diferença significativa entre as larvas controle ou desenvolvidas nas sementes contendo a farinha do genótipo L8 (Fig. 19A). No entanto, a quantidade de colesterol por mg de larva foi superior em larvas alimentadas com sementes artificiais contendo 5 e 10 % de farinha dos cotilédones do genótipo L8. Quanto maior a concentração da farinha de L8, maior foi o aumento do colesterol nas larvas, aumento superior a 100 % em comparação com o controle (Fig. 19B).

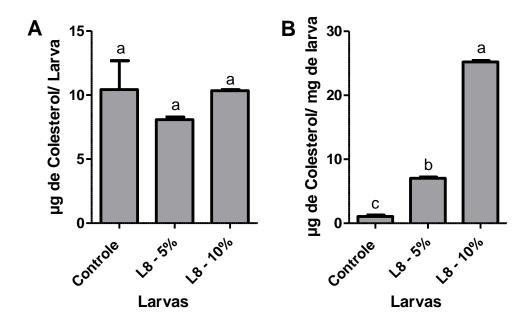


Figura 19 - Quantidade de colesterol (μg) por larva (A) e quantidade de colesterol (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.3.5. Determinação da atividade de α-amilase

A atividade de α-amilase por larva apresentou uma diminuição de 74 % nas larvas desenvolvidas nas sementes artificiais contendo farinha de cotilédones na concentração de 10 % do genótipo L8, quando comparadas ao controle (Fig. 20A). Quando levado em consideração o peso das larvas, foi possível observar que a atividade da enzima foi superior nas larvas desenvolvidas nas sementes contendo 5 e 10 % de farinha de L8, com um aumento maior que 75 % em comparação com as larvas controle (Fig. 20B).

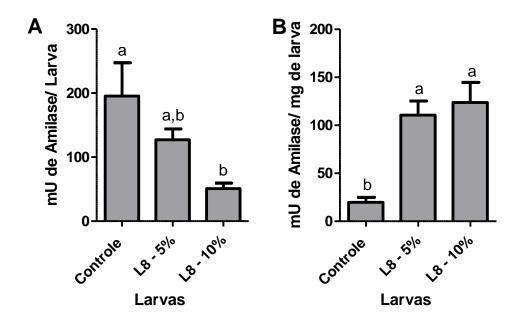


Figura 20 – Atividade de α-amilase (mU) por larva (A) e atividade de α-amilase (mU) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.3.6. Determinação da atividade de protease cisteínica

A atividade de protease cisteínica por larva mostrou uma diminuição de 23 % nas larvas desenvolvidas nas sementes artificiais contendo 10 % da farinha de cotilédones do genótipo L8 de *P. vulgaris* em relação as larvas controles (Fig. 21A). A determinação da atividade por mg de larva, mostrou que as larvas desenvolvidas nas sementes artificiais contendo farinha de cotilédones na concentração de 5 e 10 % do genótipo L8 apresentaram uma atividade muito alta, superior a 90 %, de protease cisteínica em relação as larvas controle (Fig. 21B).

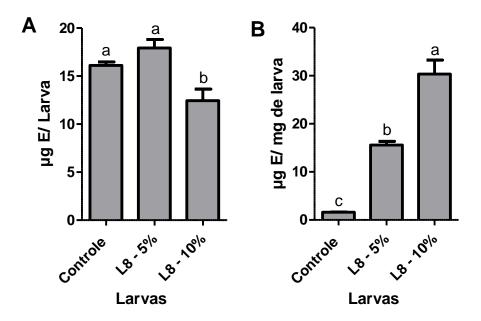


Figura 21 - Atividade de protease cisteínica (μg) por larva (A) e atividade de protease cisteínica (μg) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de *P. vulgaris*. Os experimentos foram feitos em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.3.7. Determinação da atividade de lipases

A atividade de lipase por larva foi diminuída significativamente nas larvas desenvolvidas nas sementes artificiais contendo farinha de cotilédones na concentração de 5 e 10 % do genótipo L8 de *P. vulgaris*, a diminuição observada foi de 87 e 94 % (Fig. 22A). A atividade de lipase por mg de larva não mostrou variação significativa entre as larvas controle ou dos diferentes tratamentos (Fig. 22B).

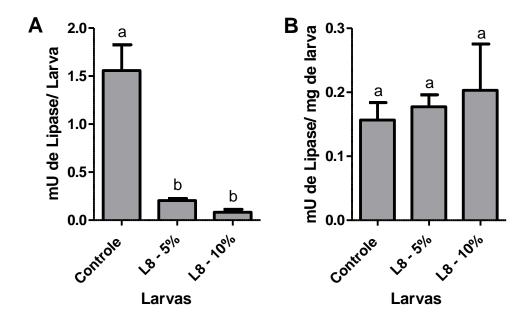


Figura 22 – Atividade de lipase (mU) por larva e atividade de lipase (mU) por mg de larva (B) de *C. maculatus* 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 5 e 10 % de farinha de cotilédone do genótipo L8 de *P. vulgaris*. O experimento foi feito em triplicata e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.4. Análise proteômica comparativa dos cotilédones dos genótipos L7 e L8 de P. vulgaris

As análises proteômicas foram realizadas comparativamente entre os genótipos L7 e L8. Os resultados mostraram um total de 615 proteínas identificadas (Tabela suplementar 1). Do total de proteínas, 9 foram encontradas unicamente nas sementes do genótipo L7, 8 foram identificadas unicamente no genótipo L8. Um total de 496 proteínas foram identificadas em ambos os genótipos e não diferiram em expressão entre L7/L8 (Fig. 23). Quando analisadas as expressões, foi observado que 40 proteínas estavam aumentadas (UP) no genótipo L7 e 62 proteínas estavam diminuídas (DOWN) no genótipo L7 (Fig. 23).

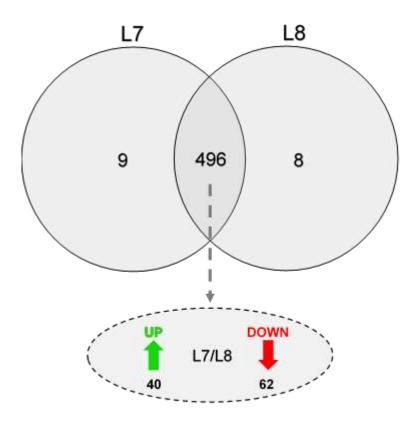


Figura 23 - Diagrama de venn representando a distribuição das proteínas identificadas durante a análise proteômica. O total de proteínas encontradas foi de 615, sendo que 9 eram únicas em L7, 8 eram únicas em L8, 40 são aumentadas (UP) em L7, 62 são diminuídas (DOWN) em L7 e 496 proteínas não diferiram em expressão entre L7/L8.

Quando analisadas as 9 proteínas encontradas unicamente nas sementes do genótipo L7, foi possível destacar 3 proteínas relacionadas à defesa de plantas, sendo uma proteína com domínio Lectina_legB (V7BC16) e duas Lipoxigenase (V7APJ1, V7BM23). As proteínas de acessos V7BJJ6 e V7BM23 foram encontradas como não caracterizada pelo software OmicsBox no banco do feijão comum *P. vulgaris* (Tabela 1). Os peptídeos das 2 proteínas não caracterizadas foram então selecionados e submetidos a um blastp para identificar proteínas similares em outras espécies de plantas. A proteína de acesso V7BJJ6 apresentou 42 % de identidade com uma proteína ribossomal 60S L12 de *Glycine max* e a proteína V7BM23 apresentou 56 % de identidade com uma Lipoxigenase de *Pisum sativum* (ervilha) (Tabela 2).

Tabela 1 – Proteínas identificadas unicamente no genótipo L7 durante a análise proteômica.

Os dados foram gerados automaticamente pelo software OmicsBox

Acesso	Descrição
V7BC16	Lectin_legB domain-containing protein
T2DPN9	Actin
V7CL69	60S ribosomal protein L27
V7APJ1	Lipoxygenase
V7BFQ4	Elongation factor 1-alpha
V7BJJ6	Uncharacterized protein
V7BM23	Uncharacterized protein
V7BNU4	Alpha-1,4 glucan phosphorylase
T2DP45	60S ribosomal protein L8-3-like protein

Tabela 2 – Proteínas identificadas unicamente no genótipo L7 que não foram caracterizadas pelo software OmicsBox. As proteínas foram identificadas por meio do blastp, no banco de dados do NCBI (https://blast.ncbi.nlm.nih.gov). Foram consideradas as proteínas vegetais já caracterizadas com maiores *score*, identidade e cobertura.

V7BJJ6	60S ribosomal protein L12 [Glycine max] Score max.: 73.2, cobertura: 98% (Soja)					
GLGGNI DLSGSIK IGPLGLSPK VTVVPSAAALVIK VTGGEVGAASSLAPK	60S ribosomal protein L12 [Glycine max] Sequence ID: XP_003537293.1 Length: 166 Number of Matches: 2 See 2 more title(s) > See all Identical Proteins(IPG) Renge 1: 19 to 166 GenPept Graphys * Next Match A Proteins	s.Minco				
FDPSQVVDVFVR EILGTCVSVGCTVDGK DLQQEISDGDVEVPLE	Score Expect Method Identities Pusitives Gaps 73.2 bits(178) 5e-13 Compositional matrix adjust. 63/151(42%) 72/151(47%) 62/151(41%)					
EILGTCVSVGCTVDGKDPK DLSGSIKEILGTCVSVGCTVDGK	Query 3 GGNIDLSGSIKIGPLGLSPKVTVVPSA 29 GG + * S+ KIGPLGLSPK VTVVPSA Sbjct 19 GGEVGAASSLAPKIGPLGLSPKKIGEDIAKETAKDNKGLRVTVKLTVQNRQAKVTVVPSA 78					
	Query 38 AALVIKVTGGEVGAASSLAPKFDPSQVVDV-FVREILG 66 AALVIK					
	Sbjct 79 AALVIKALKEPERDRKKTKNIKHSGNISLDDVVEIARVMSPRSMAKDLSGTIKEILG 135					
	Query 67 TCVSVGCTVDGKDLQQEISDGDVEVPLE 94 TCVSVGCTVDG KDLQQEISDGDVEVPLE Sbjct 136 TCVSVGCTVDGKDPKDLQQEISDGDVEVPLE 166					

V7BM23	Lipoxygenase [Pisum sativum] Score max.: 46.2, cobertura: 52% (Ervilha)
NEPWWPK DTMNINALAR YSMEMSSVIYK	lipoxygenase [Pisum sativum] Sequence ID: CAA55318.1 Length: 863 Number of Matches: 1
	Range 1: 558 to 598 GenProt Graphics Thronton A Province Man
	Score Expect Method Identities Positives Gaps 46.2 bits(108) 0.004 Compositional matrix adjust. 25/45(56%) 33/45(73%) 5/45(11%)
	Query 31 RDTMITMALAROTM-NIMALARYSHEMSSVIYKYSHEMSSVIYKY 74
	RDTMNINALARD++ N N + +E 5 + KY++EMSS +YKY Sbjct 558 #DTMNINALARDSLINANGIIERSFLPSKYAVEMSSAVYKY 598

A análise das 8 proteínas encontradas unicamente no genótipo L8 não mostrou nenhuma proteína classicamente relacionada à defesa de plantas (Tabela 3). Das 8 proteínas encontradas, 4 não foram caracterizadas pelo software OmicsBox no banco de dados do *P. vulgaris*. Os peptídeos de cada uma dessas proteínas foram usados para a realização de blastp para a tentativa de identificação. A proteína de acesso V7BLH4 apresentou alta cobertura (98 %) e 36 % de identidade com albumina-2 de *P. vulgaris*. As proteínas V7AV25 e V7CINO apresentaram identidade e alta cobertura com as proteínas cianeto liase de *V. unguiculata* e com o fator 1 de ADPribosilação de *Vitis vinífera* (uva), respectivamente. Até a data da pesquisa não foi possível encontrar similaridade entre os peptídeos da proteína de acesso V7BIT4 com proteínas vegetais depositadas no banco de dados do NCBI (Tabela 4).

Tabela 3 - Proteínas unicamente identificadas no genótipo L8 de *P. vulgaris* durante a análise proteômica . Os dados foram gerados automaticamente pelo software OmicsBox.

Acesso	Descrição
V7BLH4	Uncharacterized protein
V7CZE8	Clathrin heavy chain
V7ANU1	40S ribosomal protein S6
V7AV25	Uncharacterized protein
V7B9B8	Glucose-1-phosphate adenylyltransferase
V7BIT4	Uncharacterized protein
V7BYN3	2-Hacid_dh_C domain-containing protein (Fragment)
V7CIN0	Uncharacterized protein

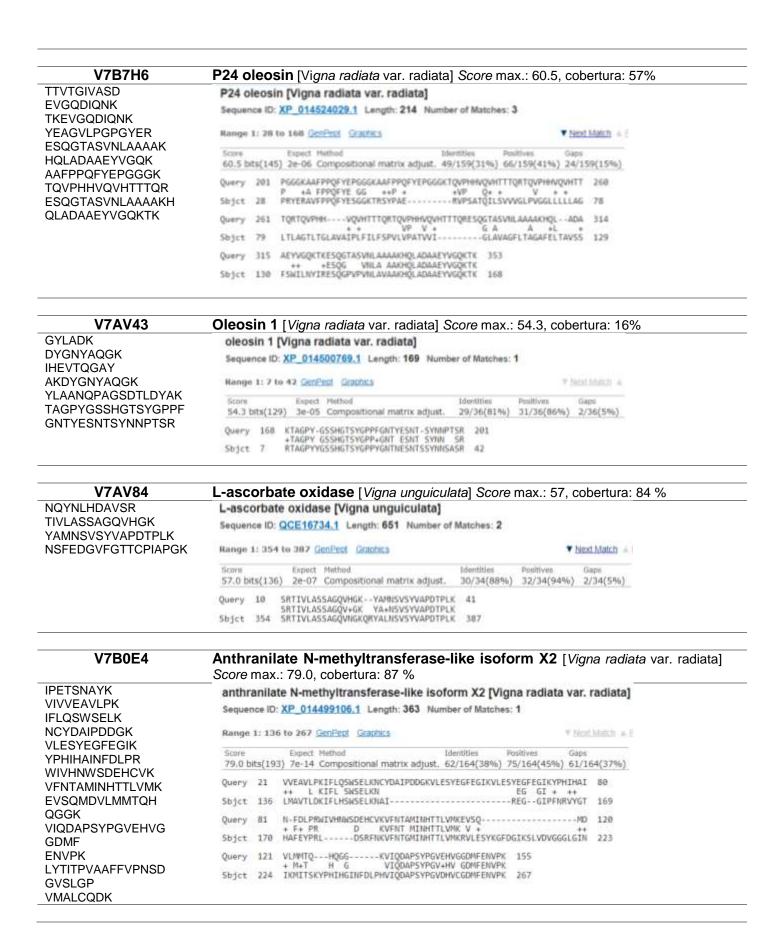
Tabela 4 -Proteínas unicamente encontradas no genótipo L8 de *P. vulgaris* que não foram caracterizadas pelo software OmicsBox. As proteínas foram identificadas por meio do blastp, utilizando suas sequências em bancos de dados do NCBI (https://blast.ncbi.nlm.nih.gov). Foram consideradas as proteínas vegetais já caracterizadas com maior *score* e maior cobertura.

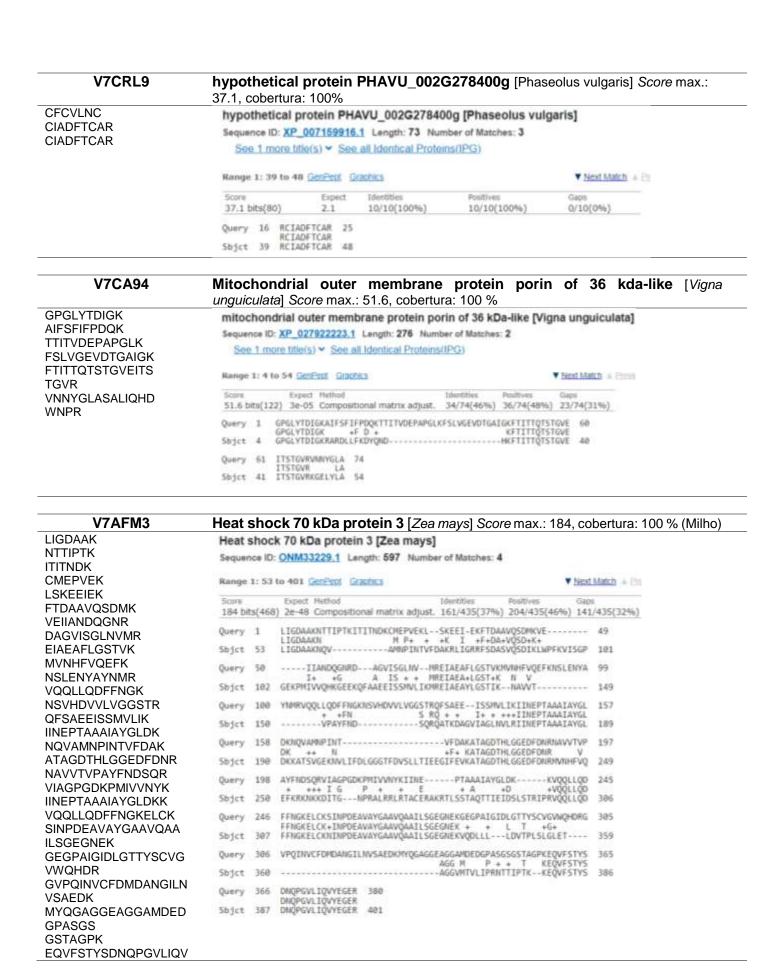
V7BLH4	Albumin-2 [Phaseolus vulgaris] Score max.: 44.7, cobertura: 98 % (Feijão comum)
--------	---

ILTNLR albumin-2 [Phaseolus vulgaris] **IDYDSK** Sequence ID: ADR30065.1 Length: 227 Number of Matches: 1 **EVYIFK AYVFSTK** Range 1: 39 to 176 GenPept Graphics ▼ Next Match ▲ Previous Match **AYINAAFR GKEVYIFK** Score Expect Method Identities Positives Gaps **NTVFENGIDSAFR** 44.7 bits(104) 0.016 Compositional matrix adjust. 51/143(36%) 67/143(46%) 50/143(34%) ILTNLRI------DYDSKIDYDSKEVYIFKAYVFSTK--AYINAA-----Query 1 ILTNLR+ DS D + KE AYVFSTK AYI+ A
ILTNLRLISSGFPSLAGTPFAEOGIDSAFDTEGKE----AYVFSTKHCAYIDYAPGTTN Sbjct 39 --FRGK----EVY-IFKNTVFENGIDSAFRNT-----VFENG----IDSAFRNTV--F Query F++ + KNTVFFNGTDSAFR+ DKILKGPTTIAEMFPVLKNTVFENGIDSAFRSIKGKEVYLFKGNKYTRIDYDSKQLIGNI 153 Sbict 94 ENGID--SAFRNTVFENGIDSAF Query 78 N D + + TVFE+GID+ F
RNITDGFTVLKGTVFESGIDACF Sbjct 154 **V7AV25** Cyanate Iyase [Vigna unquiculata] Score max.: 95.5, cobertura 95 % (Feijão fradinho) **EVYLFK** cyanate lyase [Vigna unguiculata] AYVFSTK Sequence ID: QCE05074.1 Length: 853 Number of Matches: 1 **AYINAAFR GKEVYLFK** Range 1: 495 to 610 GenPept Graphics ▼ Next Match ▲ Previous Match NTVFENGIDSAFR **NIVDGFPVLKDTIFEN** Score Expect Method Identities Positives Gans **GIDACFASHIESEAYLFK** 95.5 bits(236) 5e-20 Composition-based stats. 56/118(47%) 73/118(61%) 10/118(8%) KAYVFSTK--AYINAAFRGKEVYLFKNTVFENGIDSAFRNTVFENGIDSAFRNT--+NTVFENGIDSAFR+T AYI+ A Sbjct 495 KAYIFSTNLCAYIDYAPGTMDDKILSGPMTIAAMFPVLKNTVFENGIDSAFRSTRGKEVY VFENGIDSAFRNTVFENGIDSAFRNIVDGFPVLKDTIFENGIDACFASHIESEAYLFK Query +F+N + R + + RNI DGFP+LK TIFE+GIDAC+ASH+ESEAYLFK LFKN--NKYVRIAYDSKQLVGSIRNIGDGFPILKGTIFESGIDACYASHVESEAYLFK Sbjct 555 V7BIT4 **IDYDSK** Até a data da pesquisa não foi possível encontrar similaridade entre esses **IDYDSK** peptídeos com proteínas vegetais depositadas no banco de dados do NCBI **EVYLFK ELLGNIR ELLGNIR AYINAAFR GKEVYLFK** V7CIN0 ADP-ribosylation factor 1 [Vitis vinifera] Score max.: 87.0, cobertura: 80 %. (Uva) TTILYK ADP-ribosylation factor 1 [Vitis vinifera] **LGLHSLR** Sequence ID: RVX23709.1 Length: 176 Number of Matches: 2 **ILMVGLDAAGK** NVSFTVWDVGGQDK Range 1: 16 to 91 GenPept Graphics ▼ Next Match ▲ Previous Match **HYFQNTQGLIFVVDSNDR LGEIVTTIPTIGFNVETVEYK** Expect Method Identities Positives Gaps 87.0 bits(214) 9e-19 Compositional matrix adjust. 46/76(61%) 54/76(71%) 7/76(9%) HSLRILMVGLDAAGKILMVGLDAAGKILM----VGLDAAG---KNVSFTVWDVGGQDKHY Ouerv +RILMVGLDAAGK ++ G+I+ +G + KNVSFTVWDVGGÕ +HY REMRILMVGLDAAGKTTILYKLKLGEIVTTIPTIGFNVETVEYKNVSFTVWDVGGÕTRHY Sbict FQNTQGLIFVVDSNDR FQNTQGLIFVVDSNDR Query 76 Sbjct 76 FÖNTÖGLIFVVDSNDR

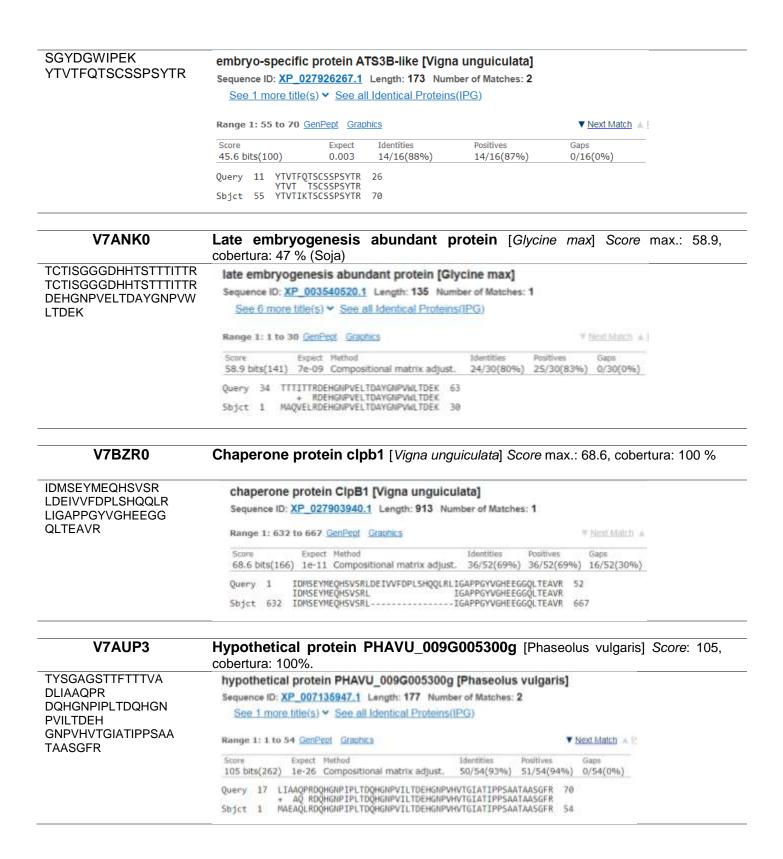
Dentre as 40 proteínas aumentadas (UP) no genótipo L7 de *P. vulgaris*, foi possível observar algumas proteínas classicamente relacionadas à defesa de plantas,

como proteínas com domínio Lectina_legB (V7C787, V7C5Y6), uma proteína contendo domínio Peptidase A1 (V7BP67) e uma proteína relacionada a patogênese-PR (Q43634). Um total de 15 proteínas não foram caracterizadas pelo software OmicsBox (Tabela 5) sendo então realizados blastp para a possível identificação. A proteína de acesso V7BH66, apresentou 29 % de cobertura e 68 % de identidade com oliosina de V. angularis. Os acessos V7B7H6 e V7AV43 apresentaram 31 e 81 % de identidade com as proteínas oliosina P24 e oliosina 1 de V. radiata, respectivamente. As proteínas V7AV84, V7CA94, V7C056 e V7BZR0 apresentaram alta cobertura e alta identidade com as proteínas L-ascorbato oxidase, proteínas de membrana mitocondrial externa (porina), proteína específica de embrião, chaperona clpb1 de V. unguiculata. Foram encontradas três proteínas (V7CRL9, V7BCX8 e V7AUP3) com alta cobertura e alta identidade com proteínas hipotéticas de P. vulgaris, a PHAVU_002G278400g, a PHAVU_007G072500g e a PHAVU_009G005300g. Os acessos V7B0E4, V7AFM3 e V7B117, possuíram alta cobertura e 38, 37 e 35 % de identidade com uma isoforma semelhante a antranilato N-metiltransferase X2 de V. radiata, proteína 3 de Zea mays e uma proteína de membrana plastidial externa de V. angulares. Também, foram encontradas uma peamacleína (V7CVE6) de Arachis hypogaea (amendoim) com 71 % de identidade e uma proteína abundante na embriogênese tardia (V7ANK0) de Glycine max com 80 % de cobertura. As proteínas identificadas por blastp não apresentaram relação com defesa de plantas (Tabela 6).


Tabela 5 - Proteínas com expressão aumentada (UP) no genótipo L7 de *P. vulgaris*, identificadas durante a análise proteômica. Os dados foram gerados automaticamente pelo software OmicsBox.


Acesso	Descrição
V7C787	Lectin_legB domain-containing protein
T2DP01	14-3-3 protein
V7AM98	PPM-type phosphatase domain-containing protein
V7BH66	Uncharacterized protein
V7C867	Bet_v_1 domain-containing protein
T2DLW1	40S ribosomal protein S3-3-like protein
V7B7H6	Uncharacterized protein
V7BU01	Protein-serine/threonine phosphatase
V7AV43	Uncharacterized protein (Fragment)
V7CDG1	Str_synth domain-containing protein

V7BP18	Clathrin heavy chain
V7B0P3	Transaldolase
V7CR67	60S ribosomal protein L6
V7C5Y6	Lectin_legB domain-containing protein
T2DNM6	Proteasome subunit beta
V7AV84	Uncharacterized protein
V7BFR1	Alpha-L-fucosidase
V7B0E4	Uncharacterized protein
T2DNB9	Pyridoxal biosynthesis protein PDX1-like protein
V7AQS4	Catalase
Q41111	Dehydrin
V7C7H0	Ribosomal_L6e_N domain-containing protein
V7BLY4	AB hydrolase-1 domain-containing protein
V7CRL9	Uncharacterized protein
V7CA94	Uncharacterized protein
V7CR63	EF1_GNE domain-containing protein
V7BP67	Peptidase A1 domain-containing protein
V7AFM3	Uncharacterized protein
V7B8Z2	Ribosomal_L16 domain-containing protein
V7CVE6	Uncharacterized protein
V7BCX8	Uncharacterized protein
V7ACP9	DUF4149 domain-containing protein
Q43634	Intracellular pathogenesis related protein
V7BUJ1	LRRNT_2 domain-containing protein
V7B117	Uncharacterized protein
V7C056	Uncharacterized protein
V7ANK0	Uncharacterized protein
V7BZR0	Uncharacterized protein (Fragment)
V7C2N5	Glyceraldehyde-3-phosphate dehydrogenase
V7AUP3	Uncharacterized protein


Tabela 6 - Proteínas com expressão aumentada (UP) no genótipo L7 de *P. vulgaris*, que não foram caracterizadas pelo software OmicsBox. As proteínas foram identificadas por meio do blastp, utilizando suas sequências em bancos de dados do NCBI (https://blast.ncbi.nlm.nih.gov). Foram consideradas as proteínas vegetais já caracterizadas com maior *score* e maior cobertura.

V7BH66 Oleosin protein [Vigna angularis] Score max.: 41.6, cobertura: 29%				: 29%
DCGIVN EIKDCGIVN	Oleosin protein [Vigna angularis]			
QSPQPSLGYK HPPGADQLDSAR AREIKDCGIVN DDPHQQTLCTQVAK QSPQPSLGYKDDPHQ QTLCTQVAK	Sequence ID: KAG2397605.1 Length: 104 Number of Matches: 1			
	See 1 more title(s) ➤ See all Identical Proteins	<u>s(IPG)</u>		
	Range 1: 10 to 34 GenPept Graphics		▼.	Next Match A
	Score Expect Method	Identities	Positives	Gaps
	41.6 bits(96) 0.035 Compositional matrix adjust.	17/25(68%)	19/25(76%)	0/25(0%)
	Query 62 KQSPQPSLGYKDDPHQQTLCTQVAK 86 OS +PS Y+DDPHOOTLCT V K			
	Sbjct 10 SQSARPSFHYRDDPHQQTLCTHVTK 34			

V7CVE6	Peamaclein [Arachis hypogaea] Score max.: 39.7, cobertura: 73 % (Amendoim)	
HECPCYR	peamaclein [Arachis hypogaea]	
HECPCYR	Sequence ID: XP 025606890.1 Length: 88 Number of Matches: 1	
FCGICCSK CVPSGTYGNK	See 1.more title(s) ➤ See all Identical Proteins(IPG)	
CVPSGTYGNK	Range 1: 47 to 69 GenPept Graphics	
	Score Expect Method Identities Positives Gaps 39.7 bits(91) 0.031 Compositional matrix adjust. 22/31(71%) 22/31(70%) 8/31(25%)	
	Query 12 CYRFCGICCSKCVP5GTYGNKCVP5GTYGNK 42 C RFCGICCSKC KCVP5GTYGNK Sbjct 47 CLRFCGICCSKCKCVP5GTYGNK 69	
V7BCX8	hypothetical protein PHAVU_007G072500g [Phaseolus vulgaris] Score ma 96.5, cobertura: 90%	X.:
AIITPSK	hypothetical protein PHAVU_007G072500g [Phaseolus vulgaris]	
LYYSAHK	Sequence ID: XP 007143441.1 Length: 245 Number of Matches: 4	
VAFPSLHSSK	See 1 more title(s) ➤ See all Identical Proteins(IPG)	
IFTIVDWLR AFVPIFYNSR	See Thore title(s) • See all Identical Flotellis(ii O)	
AAAPHVFLLASQV	Range 1: 83 to 160 GenPept Graphics ▼ Next Match ▲ Previous Match	<u>tch</u>
FMEGVTYSGR	Score Expect Identities Positives Gaps 96.5 bits(220) 8e-19 42/81(52%) 43/81(53%) 31/81(38%)	
	Query 14 KVAFPSLHSSKIFTIVDWLRAFVPIFYNSRAA 45 KVAFPSLHSSK IF I+ L F PI Y AA	
	Sbjct 83 KVAFPSLHSSKEGPIFNPQNKMFALYIFIAAIIG-LFAPIAYILDGIYEGDKEGIKAA 139	
	Query 46 APHVFLLASQVFMEGVTYSGR 66	
	APHVFLLASQVFMEGVTYSGR Sbjct 140 APHVFLLASQVFMEGVTYSGR 160	
V7B117	Outer plastidial membrane protein [Vigna angularis] Score max.: 98.2, cober 91 %	rtura
AIFNFK	Outer plastidial membrane protein [Vigna angularis]	
NITTDIK	Sequence ID: KAG2404110.1 Length: 287 Number of Matches: 3	
SNAGLSFTK GPGLYTDIGK	The state of the s	
DDLIASLTLNDK	Range 1: 1 to 236 GenPect Graphics ▼ Next Match # P	
SFFTISGEVDTK	Score Expect Method Identities Positives Gaps	
SEFFISGEVOIR	QR 2 hitc(2d3), 1p.1Q. Compositional matrix artists, 100/282/3585, 124/282/4365, 87/282/3085	
	98.2 bits(243) 1e-19 Compositional matrix adjust. 100/287(35%) 124/287(43%) 87/287(30%)	
GELFVADVNTQLK TSALIQHEWRPK	Query 34 FTKGPGLYTDIGKDOLIASLTLNDKDOLIASLTLNDKSFFTISGEVDTKSFFTISGEVDT 93 KGPGLY+DIGK +D L N K FT++ T T SG	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT	Query 34 FTKGPGLYTDIGKDOLIASLTLNDKDOLIASLTLNDKSFFTISGEVDTKSFFTISGEVDT 93	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT SSGTR	Query 34 FTKGPGLYTDIGKDOLIASLTLNDKDDLIASLTLNDKSFFTISGEVDTKSFFTISGEVDT 93 KGPGLY+DIGK +D L N K FT++ T T SG Sbjct 1 MAKGPGLYSDIGKKARDLLFKDYQSNQKFTVTTYSPTGVAITSSGTR 47 Query 94 KGELFVADVNTQLKGELFVADVNTQLKGELFVADVNTQLKTSALIQHEWRPKTSAL 149	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT SSGTR SNAGLSFTKDDLIAS	Query 34 FTKGPGLYTDIGKDDLIASLTLNDKDDLIASLTLNDKSFFTISGEVDTKSFFTISGEVDT 93 KGPGLY+DIGK +D L N K FT++ T T SG Sbjct 1 MAKGPGLYSDIGKKARDLLFKDYQSNQKFTVTTYSPTGVAITSSGTR 47	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT SSGTR SNAGLSFTKDDLIAS LTLNDK VDTDSNLFTTITVNEP	Query 34 FTKGPGLYTDIGKDDLIASLTLNDKDDLIASLTLNDKSFFTISGEVDTKSFFTISGEVDT 93 KGPGLY+DIGK +D L N K FT++ T T SG Sbjct 1 MAKGPGLYSDIGKKARDLLFKDYQSNQKFTVTTYSPTGVAITSSGTR 47 Query 94 KGELFVADVNTQLKGELFVADVNTQLKGELFVADVNTQLKTSALIQHEWRPKTSAL 149 KGELFVADVNTQLK + D+ LF V + LK A+ + + 5 Sbjct 48 KGELFVADVNTQLKNKNITTDIKVDTDSNLFTTITVNEPAPGLKAIFNFKVPDQRSGK 105 Query 150 IOHEWRPKFTVTTYSPTGVAITSSGTRSNAGL 181	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT SSGTR SNAGLSFTKDDLIAS LTLNDK VDTDSNLFTTITVNEP APGLK	Query 34 FTKGPGLYTDIGKDOLIASLTENDKDDLIASLTENDKSFFTISGEVDTKSFFTISGEVDT 93 KGPGLY+DIGK +D L N K FT++ T T 5G Sbjct 1 MAKGPGLYSDIGKKARDLLFKDYQ5NQKFTVTTYSPTGVAITSSGTR 47 Query 94 KGELFVADVNTQLKGELFVADVNTQLKGELFVADVNTQLKTSALIQHEWRPKTSAL 149 KGELFVADVNTQLK + D+ LF V + LK A+ + + 5 Sbjct 48 KGELFVADVNTQLKNKNITTDIKVDTDSNLFTTITVNEPAPGLKAIFNFKVPDQRSGK 105	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT SSGTR SNAGLSFTKDDLIAS LTLNDK VDTDSNLFTTITVNEP APGLK FSTNENTLILGTQHA	Query 34 FTKGPGLYTDIGKDDLIASLTLNDKSDLIASLTLNDKSFTISGEVDTKSFTISGEVDT 93 KGPGLY+DIGK +D L N K FT++ T T SG Sbjct 1 MAKGPGLYSDIGKKARDLLFKDYQSNQKFTVTTYSPTGVAITSSGTR 47 Query 94 KGELFVADVNTQLKGELFVADVNTQLKGELFVADVNTQLKTSALIQHEWRPKTSAL 149 KGELFVADVNTQLK + D+ LF V + LK A+ + + S Sbjct 48 KGELFVADVNTQLKNCNITTDIKVDTDSNLFTTITVNEPAPGLKAIFNFKVPDQRSGK 105 Query 150 IQHEWRPKFTVTTYSPTGVAITSSGTRSNAGL 181 ++ ++ + T V +T+ SG T+SNAGL Sbjct 106 VELQYLHDYAGISTSVGLTANPIVNFSGVVGTNVLALGADLSFDTKIGELTKSNAGL 162	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT SSGTR SNAGLSFTKDDLIAS LTLNDK VDTDSNLFTTITVNEP APGLK FSTNENTLILGTQHA LDPLTTLK	Query 34 FTKGPGLYTDIGKDDLIASLTLNDKDDLIASLTLNDKSFTISGEVDTKSFTISGEVDT 93 KGPGLY+DIGK +D L N K FT++ T T SG Sbjct 1 MAKGPGLYSDIGKKARDLLFKDYQSNQKFTVTTYSPTGVAITSSGTR 47 Query 94 KGELFVADVNTQLKGELFVADVNTQLKGELFVADVNTQLKTSALIQHEWRPKTSAL 149 KGELFVADVNTQLK + D+ LF V + LK A+ + + S Sbjct 48 KGELFVADVNTQLKNKNITTDIKVDTDSNLFTTITVNEPAPGLKAIFNFKVPDQRSGK 105 Query 150 IQHEWRPKFTVTTYSPTGVAITSSGTRSNAGL 181 ++ ++ + T V +T+ SG T-SNAGL Sbjct 106 VELQYLHDVAGISTSVGLTANPIVNFSGVVGTNVLALGADLSFDTKIGELTKSNAGL 162 Query 182 SFTKDDLIASLTLNDKVDTDSNLFTTITVNEPAPGLKFSTNENTLILGTQHALDPLTTLK 241	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT SSGTR SNAGLSFTKDDLIAS LTLNDK VDTDSNLFTTITVNEP APGLK FSTNENTLILGTQHA LDPLTTLK GDALNAAYYHVVNP LTNTAVG	Query 34 FTKGPGLYTDIGKDDLIASLTLNDKDDLIASLTLNDKSFTTISGEVDTKSFTTISGEVDT 93 KGPGLY+DIGK +D L N K FT++ T T SG Sbjct 1 MAKGPGLYSDIGKKARDLLFKDYQSNQKFTVTTYSPTGVAITSSGTR 47 Query 94 KGELFVADVNTQLKGELFVADVNTQLKGELFVADVNTQLKTSALIQHEWRPKTSAL 149 KGELFVADVNTQLK + D+ LF V + LK A+ + + 5 Sbjct 48 KGELFVADVNTQLKNKNITTDIKVDTDSNLFTTITVNEPAPGLKAIFNFKVPDQRSGK 105 Query 150 IQHEWRPKFTVTTYSPTGVAITSSGTRSNAGL 181 ++++ + T V +T+ SG T+SNAGL Sbjct 106 VELQYLHDYAGISTSVGLTANPIVNFSGVVGTNVLALGADLSFDTKIGELTKSNAGL 162 Query 182 SFTKDDLIASLTLNDKVDTDSNLFTTITVNEPAPGLKFSTNENTLILGTQHALDPLTTLK SFTKDDLIASLTL S++ K Sbjct 163 SFTKDDLIASLTLNDKVDTDSNLFTTITVNEPAPGLKFSTNENTLILGTQHALDPLTTLK K 189	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT SSGTR SNAGLSFTKDDLIAS LTLNDK VDTDSNLFTTITVNEP APGLK FSTNENTLILGTQHA LDPLTTLK GDALNAAYYHVVNP LTNTAVG AEVTHR	Query 34 FTKGPGLYTDIGKDDLIASLTLNDKSDLIASLTLNDKSFFTISGEVDTKSFFTISGEVDT 93 KGPGLY+DIGK +D L N K FT++ T T SG Sbjct 1 MAKGPGLYSDIGKKARDLLFKDYQSHQKFTVTTYSPTGVAITSSGTR 47 Query 94 KGELFVADVNTQLKGELFVADVNTQLKGELFVADVNTQLKTSALIQHEWRPKTSAL 149 KGELFVADVNTQLK + D+ LF V + LK A+ + S Sbjct 48 KGELFVADVNTQLKNCNITTDIKVDTDSNLFTTITVNEPAPGLKAIFNFKVPQRSGK 105 Query 150 IQHEWRPKFTVTTYSPTGVAITSSG	
GELFVADVNTQLK TSALIQHEWRPK FTVTTYSPTGVAIT SSGTR SNAGLSFTKDDLIAS LTLNDK VDTDSNLFTTITVNEP APGLK FSTNENTLILGTQHA LDPLTTLK GDALNAAYYHVVNP LTNTAVG	Query 34 FTKGPGLYTDIGKDDLIASLTLNDKDDLIASLTLNDKSFFTISGEVDTKSFFTISGEVDT 93 KGPGLY4DIGK +D L N K FT++ T T SG Sbjct 1 MAKGPGLYSDIGKKARDLLFKDYQSNQKFTVTTYSPTGVAITSSGTR 47 Query 94 KGELFVADVNTQLKGELFVADVNTQLKGELFVADVNTQLKTSALIQHEWRPKTSAL 149 KGELFVADVNTQLK + D+ LF V + LK A+ + + S Sbjct 48 KGELFVADVNTQLKNKNITTDIKVDTDSNLFTTITVNEPAPGLKAIFNFKVPDQRSGK 105 Query 150 IQHEWRPKFTVTTYSPTGVAITSSGTRSNAGL 181 ++ ++ + T V +T+ SG T+SNAGL Sbjct 106 VELQYLHDYAGISTSVGLTANPIVNFSGVVGTNVLALGADLSFDTKIGELTKSNAGL 162 Query 182 SFTKDDLIASLTLNDKVDTDSNLFTTITVNEPAPGLKFSTNENTLILGTQHALDPLTTLK 241 SFTKDDLIASLTL S++ K Sbjct 163 SFTKDDLIASLTLFLLPLFPSSAWND	

Nas análises das 62 proteínas diminuídas (DOWN) no genótipo L7 de *P. vulgaris* foi possível destacar algumas proteínas relacionadas à defesa de plantas,

sendo duas lipoxigenases (V7C0Q5, V7AQB1), uma proteína com domínio peptidase A1 (V7BWH9), uma albumina 2S e um Inibidor de tripsina (V7C4W6), sendo essas duas últimas não caracterizadas pelo software OmicsBox e que foram caracterizadas por análises pelo blastp (Tabela 7). Um total de 23 dessas proteínas não foram caracterizadas pelo software OmicsBox, sendo necessária a realização de blastp para a identificação. A proteína de acesso V7BLG9 apresentou 52 % de identidade com uma albumina 2S de P. vulgaris. A proteína V7C4W6 apresentou uma cobertura de 72 % e 59 % de identidade com um inibidor de tripsina de *P. vulgaris*. As proteínas de acesso V7BLG9, V7CXU2, V7C497, V7BVR5, V7CVX7, V7B8S3, V7AFC8 e V7BVR5 apresentaram alta cobertura com as seguintes proteínas de P. vulgaris: albumina-2, peroxirredoxina, proteína hipotética PHAVU_007G263500g e PHAVU_005G044200g, proteína pvlea 4-5 abundante em embriogênense tardia, proteína de domínio Cbs, proteína LEA-18. O acesso V7AUJ5 apresentou 100 % de cobertura e 100% de identidade com uma parvalbumina de Parasponia andersonii. Foram encontradas 5 proteínas (V7AF97, V7BEC0, V7B198, V7BKJ4 e V7CW25) com mais de 66% de cobertura com uma proteína ribossomal 60S L12 (50 % de identidade), uma chaperona (37 % de identidade), subunidade de ATP sintase (45 % de identidade), proteína de ligação ao cálcio CML (56 % de identidade) e proteína de maturação de semente (63 % identidade) de V. unguiculata. A proteína V7B5W7 e V7CEC3 apresentaram alta cobertura com GEA6 e proteínas relacionadas a Ras de Olea europaea (Oliveira) e Glycine max, respectivamente. O acesso V7B9Z2 apresentou 100 % de cobertura e 35 % de identidade com uma Glutationa S-transferase de Tanacetum cinerariifolium. Os acessos V7CGW9 e V7BF08 apresentaram 100 e 86 % de cobertura, respectivamente, com um fator 1 de ribosilação de ADP e um provável mediador da RNA polimerase II de *Populus tremuloides* (Álamo-trémulo) e *Populus* euphratica. As proteínas V7BGD9 e V7C8Z4 apresentaram 100 % de cobertura com uma proteína ribossmoal 60S de Abrus precatorius (Ervilha-do-rosário) e uma Nucleorredoxina de Cajanus cajan (quandu), respectivamente. E o acesso V7ANA4 apresentou 98 % de cobertura e 70 % de identidade com a proteína abundante na embriogenese tardia de Cynara cardunculus (Alcachofra) (Tabela 8).

Tabela 7 - Proteínas encontradas diminuídas (DOWN) no genótipo L7 de *P. vulgaris* identificadas durante a análise proteômica. Os dados foram gerados automaticamente pelo *software* OmicsBox.

Acesso	Descrição
V7C0Q5	Lipoxygenase (Fragment)
V7B0I2	Ribosomal_L7Ae domain-containing protein
V7BXR3	3-isopropylmalate dehydrogenase
V7AEU9	Purple acid phosphatase
V7BC05	EGF-like domain-containing protein
V7BLG9	Uncharacterized protein
V7CU10	Phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate-dependent)
T2DNK7	14-3-3 protein
V7CXU2	Uncharacterized protein (Fragment)
V7ACX0	Purple acid phosphatase
V7AF97	Uncharacterized protein
V7BFS2	Phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate-dependent)
V7AUJ5	Uncharacterized protein
T2DLX0	40S ribosomal protein S3-3-like protein
V7CF38	Citrullineaspartate ligase
V7BVW3	Aldedh domain-containing protein
V7BEC0	Uncharacterized protein
V7BSM8	Annexin
V7AR26	Proteasome subunit alpha type
V7BP04	Peptidyl-prolyl cis-trans isomerase
V7CLA3	Tubulin beta chain
V7CDE0	Malate dehydrogenase
V7BWR2	Dirigent protein
V7CZL3	Phosphopyruvate hydratase
V7C497	Uncharacterized protein
V7B198	Uncharacterized protein
V7B850	14_3_3 domain-containing protein
V7CQR2	Aspartate-semialdehyde dehydrogenase
T2DPJ8	40S ribosomal protein S6
V7C7X2	N-acyl-L-amino-acid amidohydrolase
V7BKJ4	Uncharacterized protein
V7BWH9	Peptidase A1 domain-containing protein
V7BQW2	Amidohydro-rel domain-containing protein
V7CXB2	NAC-A/B domain-containing protein
V7B7E3	Amidohydro-rel domain-containing protein
V7BMF8	Glutathione transferase
V7BVD2	Aconitate hydratase
V7BGH4	Calreticulin
V7CXD6	Glutaredoxin-dependent peroxiredoxin
V7B5W7	Uncharacterized protein
V7CVX7	Uncharacterized protein
V7C4W6	Uncharacterized protein

V7AQB1	Lipoxygenase
T2DNI1	Hydroxyacylglutathione hydrolase
V7AGU9	NAD(P)-bd_dom domain-containing protein
V7AXU4	Protein disulfide-isomerase
V7B8S3	Uncharacterized protein
V7B9I8	EF1_GNE domain-containing protein
V7CEC3	Uncharacterized protein
V7B9Z2	Uncharacterized protein
V7AFC8	Uncharacterized protein
V7CTB5	PKS_ER domain-containing protein
V7CGW9	Uncharacterized protein
V7BF08	Uncharacterized protein
V7AG63	RRM domain-containing protein
V7CW25	Uncharacterized protein
V7BGD9	Uncharacterized protein
V7CCI9	Uncharacterized protein
V7BVR5	Uncharacterized protein
V7ANA4	Uncharacterized protein
V7BVE8	Epimerase domain-containing protein
V7C8Z4	Uncharacterized protein

Tabela 8 - Proteínas encontradas diminuídas (DOWN) no genótipo L7 de *P. vulgaris* que não foram caracterizadas pelo *software* OmicsBox. As proteínas foram identificadas por meio de blasts, utilizando suas sequências em bancos de dados do NCBI (https://blast.ncbi.nlm.nih.gov). Foram consideradas as proteínas vegetais já caracterizadas com maior *score* e maior cobertura.

V7BLG9	Albumin-2 [Phaseolus vulgaris] Score max.: 164	4, cobertura: 88 %		
DILSGN	albumin-2 [Phaseolus vulgaris] Sequence ID: ADR30065.1 Length: 227 Number of Matches: 1			
GNQYVR				
IDYDSK				
EVYLFK	Mange 1: 15 to 221 GenPept Graphics	Whise March A 19		
VHYTPGK	Score Expect Method Identities Positi			
QLIGNIR	164 bits(415) 1e-47 Compositional matrix adjust. 108/207(52%) 118/	207(57%) 63/207(30%)		
AYINAAFR	Query 19 EVYLFKVHYTPGKQLIGNIRAY	THAAFREA 48		
EAYVFSTK	Sbjet 15 EVYFFLKKNHYVRVHYTPGKTDDKILTNLRLISSGFPSLAGTPFARQG	IDSAFDTEGKEA 74		
GKEVYLFK NITDGFTVLK	Query 49 YVESTKGKEVYLFKNITDGFTVLKGPTTIAEMFPVLKNTVFENGIDSA	10.76		
GPTTIAEMFPVLK	Sbjct 75 YVFSTK * T +LKGPTTIAENFPVLKNTVFENGIDSAI Sbjct 75 YVFSTKHCAYIDYAPGTTNDKILKGPTTIAENFPVLKNTVFENGIDSAI			
NTVFENGIDSAFR	Query 181AYIDYAPGTTNDKGTVFESGIDACFASHEESI	EAYLFK 137		
HCAYIDYAPGTTNDK	Sbjct 135 KGNKYTRIDYDSKQLIGNIRNITDGFTVLKGTVFESGIDACFASHEESI			
GTVFESGIDACFASHEESEAYLFK YTPGSSNDTLLGDVRPILDGWPCLK	Query 138YTPG5SNDTLLGDVRPILDGWPCLK 162			
TH GOOD TEED VICE TEDOWN OLD	Sbjct 195 IKYTPGSSNDTLLGDVRPILDGMPCLK 221			
V7CXU2	Peroxiredoxin [Phaseolus vulgaris] Score: 122	cobertura: 95 %		

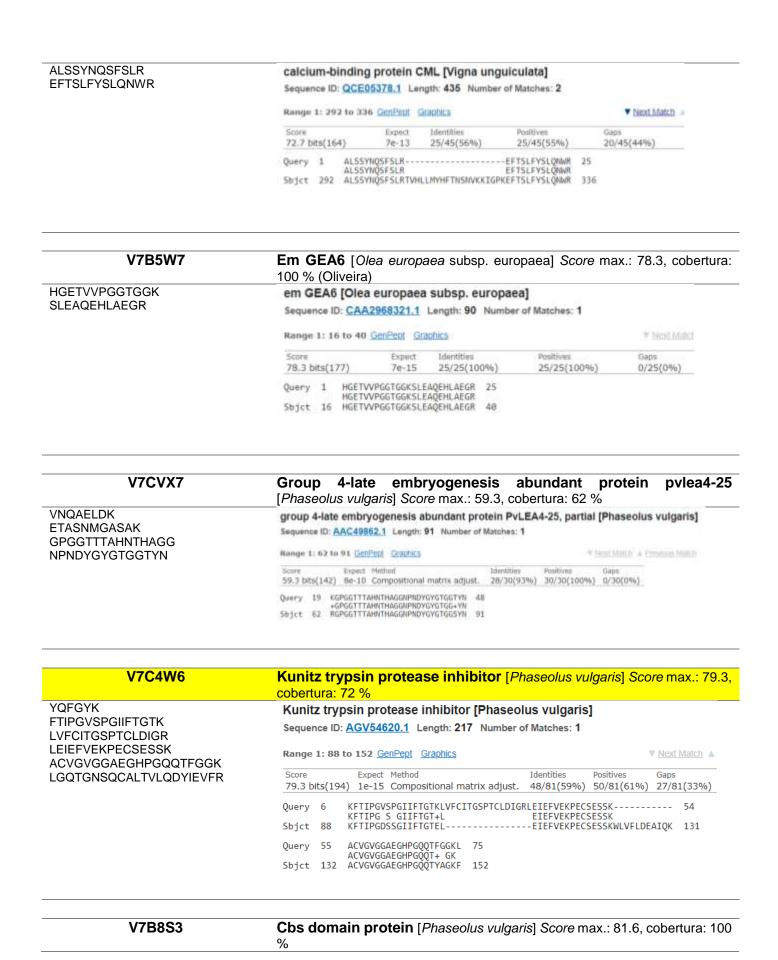
EYFSAI peroxiredoxin [Phaseolus vulgaris] **FSHLAWVQTDR** Sequence ID: CAC17803.1 Length: 260 Number of Matches: 1 **SYDVLIPDQGIALR** See 1 more title(s) ➤ See all Identical Proteins(IPG) **EGVIQHSTINNLAIGR SGGLGDLNYPLISDVTK** Range 1: 141 to 244 GenPegt Graphics W Most Minut A 1 TLQALQYVQENPDEVCPAGWKPGEK Espect Hethod 122 bits(306) 5e-32. Compositional matrix adjust. 67/114(59%) 72/114(63%) 39/114(34%) AIFSHLAWQTDR SYDVLIPDQGIALR EGVI ++FSHLAWQTDR SYDVLIPDQGIALR EGVI 5bjct 141 SVFSHLAWVQTDRXSGGLGDLNYPLISDVTXSISXSYDVLIPDQGIALRGLFIIDKEGVI QHSTINNLAIGRSGGLGDLNYPLISDVTKTLQALQYVQEHPDEVCPAGWKPGEK Query 36 QHSTINNLAIGRS ++ +TLQALQYVQENPDEVCPAGAKPGEK QHSTINNLAIGRS------VDETKRTLQALQYVQENPDEVCPAGAKPGEK Shjct 201 **V7AF97** 60S ribosomal protein L12 [Vigna unguiculata] Score max.: 100, cobertura: 66 %. **DLSGSIK** 60\$ ribosomal protein L12 [Vigna unguiculata] **IGPLGLSPK** Sequence ID: XP_027912045_1 Length: 166 Number of Matches: 1 VTVVPSAAALVIK See 1 more title(s) > See all Identical Proteins(IPG) VTGGEVGAASSLAPK **FDPSQVVDVFVR** Range 1: 31 to 166 GenFlept Graphics Y Nost Match: A.S. **HNGNISLDDVIEIAR** Expect Hethod **EILGTCVSVGCTVDGK** 100 bits(250) 1e-23 Compositional matrix adjust. 73/147(50%) 78/147(53%) 61/147(41%) DLQQEITDGDVEVPLD **EILGTCVSVGCTVDGKDPK** KIGPLGLSPK------VTVVPSAAALVIKVTGGEV 35 Query 7 DLSGSIKEILGTCVSVGCTVDGK Sbjct 31 KIGPLGLSPKKIGEDIAKETAKDWKGLRYTVKLTVQNRQAKVTVVPSAAALVIK-----Query 36 GAASSLAPKFDPSQVVDVFVRHNGNISLDDVIEIAR------EILGTCVS 79 S P+ D + ++ +MNGNISLDOVIEIAR EILGTCVS
---SLKEPERDRXXTKNI--KHNGNISLDOVIEIARVMKPRSMAKDLSGTIKEILGTCVS 139 Sbjct 85 VGCTVDGKD---LQQEITDGDVEVPLD 183 VGCTVDGKD LQQEITDGDVEVPLD VGCTVDGKDPKDLQQEITDGDVEVPLD 166 Query 80 Sbjct 140 V7AUJ5 Parvalbumin [Parasponia andersonii] Score max.: 52.0, cobertura: 100 % TLNLALENLPKDR Parvalbumin [Parasponia andersonii] **EVLSDILLGMAAGLK** Sequence ID: PON55117.1 Length: 366 Number of Matches: 2 Range 1: 100 to 115 GenPect Grachics ▼ Next Match 52.0 bits(115) 2e-05 16/16(100%) 16/16(100%) 0/16(0%) REVLSDILLGMAAGLK 28 REVLSDILLGMAAGLK 115 Sbict 100 V7BEC0 Chaperonin CPN60-2, mitochondrial [Vigna unguiculata] Score max.: 103, cobertura: 87 %

EGVITISDGK chaperonin CPN60-2, mitochondrial [Vigna unguiculata] **IGGASEAEVGEK** Sequence ID: XP 027936739.1 Length: 575 Number of Matches: 2 **IGVQIIQNALK SVAAGMNTMDLR** Range 1: 130 to 342 GenPect Graphics ¥ Next Match A Fr **NVVIEQSFGAPK DDTVILDGAGDKK** 103 bits(258) 1e-21 Compositional matrix adjust. 93/250(37%) 107/250(42%) 103/250(41%) GYISPYFITNQK IIQNALKSVAAGANTHOLRNVVIEQSEGAPKOOTVILDGAGDKKGYISPYFITNQKGINH 86 GINMAVDSVVTNLK Query 27 KSVAAGMN PIDLR **GINMAVDSVVTNLK** Sbjct 130 **TLYNELEVVEGMK** Query 87 -INMAVDSV --VTNLKT 111 SAIENSTSDYDKEK AVD+VVTNLK I A++ V +++ KT AVDAVVTNLKSRARHISTSEEIAQVGTISANGEREIGELIAKAMEKVGKEGVITISOGKT CELEDPLIIIHEK Shict 154 LLEQNNPDLGYDAAK LYNELEWEGRKSAIENSTSDY-----DKEKCELEDPLIIIHEK-Query 112 AAVEEGIVPGGGVALLYASK LYNELEWEGNK 5 Y +KCELEDPLIIIHEK L LYNELEWEGNKLD-RGYISPYFITNQKNQKCELEDPLIIIHEKKISSINAIVKVLELAL Sbict 214 SGLQDLAVLTGGQLITEELGLNLEK EQMMP-----DLGYDAAKAAVEEGIVPGGGVALLYA-----SKSGLQDLAVLTGGQLI Query 153 200 ++ P D+ DA + + G V + A KSGLÖDLAVLTGGÖLT KRORPLLTVAEDVESDALATLILINKLRAGIKVCAIKAPGFGENRKSGLÖDLAVLTGGÖLT Shict 273 TEELGLNLEK 210 Ouery 201 TEELGLNLEK 342 Sbict 333 V7C497 hypothetical protein PHAVU_007G263500g [Phaseolus vulgaris] Score max.: 60.9, cobertura: 98% **EVYLFK** hypothetical protein PHAVU_007G263500g [Phaseolus vulgaris] **GKEVYLFK** Sequence ID: XP 007145738,1 Length: 270 Number of Matches: 3 LYYTPGQQTEIDDK See 1 more title(s) ♥ See all Identical Proteins(IPG)

LYYTPGQQTEIDDK WICDDFPSLKDYANDK

WICDDFPSLKDYANDK

V7B198


Range 1: 36 to 136 GenPeol Graphics ▼ Next Match = 60.9 bits(136) 41/113(36%) 44/113(38%) 60/113(53%) EVYLF-----KLYYTPGQQTEIDDKLYYTPGQQTEI--D-DKWICDDFPSL------ 51 I D D WIC DEPSL
-----ILRDLD-WICYDEPSLEHSSEAAY 84 EVY F LYYTPGQ T+ DDK EVYFFLQEKYMRLYYTPGQPTQTDDK--Sbjet 36 DYANDKWI---CD-D--FPSLKD--YAND 73 Query 52 K DYANDK I C D FP L + + ND GIKCSFDTEGYKAYLFSECYCVYFDYANDK-ILSFCAIDVMFPVLENTVFEND 136

ATP synthase subunit gamma, mitochondrial [Vigna unguiculata]

Score max.: 102, cobertura: 99 % GLCGGINSTSVK ATP synthase subunit gamma, mitochondrial [Vigna unguiculata] DIELSLTELQK Sequence ID: XP 027904279.1 Length: 318 Number of Matches: 2 **NPLNYTQVSVLADDILK** GLWQPFTALLGDNPSVDVK Range 1: 110 to 263 GenPeot Graphics ▼ Next Match := **EAESGGQLGELDSYEIEGGETK** Expect Method **FQSVVQFLPTVSTVLSPEVIER** 102 bits(254) 2e-23 Compositional matrix adjust. 70/156(45%) 83/156(53%) 56/156(35%) Query 1 DIELSLIEL GLCGGINSTSVKISRVLHKLNSGPDKETKYVILGEKAKAQLVRDSKKDIELSLTELQKNP Sbjct 110 LNYTQVSVLADDILKG-------LWQPFTALLGDWPSVDV-------KEAESGGQLGE LNYTQVSVLADDILK ++ F +++ P+V +EAESGG+LGE LNYTQVSVLADDILKNVEYDALRIVFNKFHSVVQFLPTVSTVLSPEVIEREAESGGKLGE Sbjct 178 LDSYEIEGGETK---FQSVVQFLPTVSTVLSPEVIE 102 Ouerv 78 LDSYEIEGGETK Q++ +F 5 V+ V+E LDSYEIEGGETKSEILQNLAEF--QFSCVMYNAVLE 263

5bjct 230

V7BKJ4 Calcium-binding protein CML [Vigna unguiculata] Score max.: 72.7, cobertura: 100 %

AIAGIITER Cbs domain protein [Phaseolus vulgaris] **VGDIMTEENK** Sequence ID: AGV54690.1 Length: 206 Number of Matches: 2 **VLQAMQLMTDNR IEEHGFESTTIADIMK** Range 1: 27 to 85 GenPept Graphics ▼ Next Match = F **SMTQNNVGALVVVKPDENK** GADGSWLWCTTDDTVYNAVK 81.6 bits(200) 1e-16 Compositional matrix adjust. 43/74(58%) 48/74(64%) 20/74(27%) Query 18 NKVLQAM-----QLMTDNRIEEHGFESTTIADIMKSMTQNNVGALVVVKPDENKGADGSW 72 Sbjct 27 Query 73 LINCTTODTYVNAVK 86 LWCTTDDTVYNAVK LWCTTDDTVYNAVK 85 Sbjct 72 V7CEC3 Ras-related protein RABD2c-like [Glycine max] Score max.: 58.2, cobertura: 94 % SCLLLR Ras-related protein RABD2c-like [Glycine max] LLLIGDSGVGK Sequence ID: NP_001241498.1 Length: 202 Number of Matches: 1 AFADEIGIPFMETSAK See 5 more title(s) ➤ See all Identical Proteins(IPG) **FADDSYLDSYISTIGVDFK** Range 1: 8 to 46 GenPept Graphics * Next Makes A 1 Expect Method Identities Positives 31/49(63%) 34/49(69%) 10/49(20%) 58.2 bits(139) 3e-08 Composition-based stats, LLRLLLIGDSGVGKAFADEIGIPFMETSAKFADDSYLDSYISTIGVDFK 52 Query 4 L +LLLIGDSGVGK+ +FADDSYLDSYISTIGVDFK
LFKLLLIGDSGVGKSC------LLRFADDSYLDSYISTIGVDFK 46 Shict 8 V7B9Z2 Glutathione S-transferase DHAR2 [Tanacetum cinerariifolium] Score max.: 100, cobertura: 90 % **VLLTLEEK** glutathione S-transferase DHAR2 [Tanacetum cinerariifolium] **VPVALFDGK** Sequence ID: GEV97474.1 Length: 416 Number of Matches: 3 VTAVDLSLAPK **IFGSFVTFLK** Range 1: 123 to 339 GenPept Graphics ▼ Next Match ▲ F AAVGAPTVLGDCPFSQR Identities WSVPESLAHVHNYTK 100 bits(249) 1e-21 Compositional matrix adjust. 82/231(35%) 96/231(41%) 112/231(48%) **TKPPKEEYVIAGWAPK** YPEISLITPPEFATVGSK Query 17 KVTAVDLSLAPKIFGSFVTFLKAAVGAPTVLGDCPFSQRWSVPESLAHVHNYTK----- 78 K-TAVDLSLAPK++ L+ A+G ++W-VPE LAMVMYTK
Sbjct 123 KITAVDLSLAPKLY----HLEVALG-------HFKKWTVPEGLAHVMYTKSLFSRE 168 LHLIDLSNKPEWFLGVNPEGK SKDPNDGTEQALLAELSALDEHLK ----TKPPKEEYVIAGWAPKYPEI------SLITPPEF---ATVGS------- 103 Query 71 TKPPKEEYVIAGWAPK+ + SFEKTKPPKEEYVIAGWAPKHARMFHVSTESRSMLLMATEICVKAAVGAPANLGDCPFSQ 228 Sbjct 169 -----KLHLIDLSNKPEWFLGVNPEG-------124 Query 104 4HLI L NKPEWFL VNP G
Sbjct 229 WALLTLEEKQIPYSVHLISLDNKPEWFLKVNPGGAVPLIKFDVEWIPDSAVIVGLIEDKY 288 -----KSKDPNDGTEQALLAELSALDEHLK 149 Ouery 125 KSKD DGTEQAL EL ALDEH+K Sbjct 289 PEPSLHTPPELASVGSEIFGKFASFLKSKDATDGTEQALFNELKALDEHIK 339 V7AFC8 Rubisco large subunit-binding protein subunit alpha [Phaseolus vulgaris] Score max.: 99.8, cobertura: 100 %

LADAVGLTLGPR
NVVLDEFGSPK
VGAATETELEDR
ELSETDSVYDSEK
LGLLSVTSGANPVSLK
TNDSAGDGTTTASVLAR
AIELPDAMENAGAALIR
AVASISAGNDELIGQMIAEAIDK
NATFAAIEEGIVPGGGTALVHLS
TYVPAIK

RuBisCO large subunit-binding protein subunit alpha [Phaseolus vulgaris]

Sequence ID: AGV54615.1 Length: 584 Number of Matches: 2

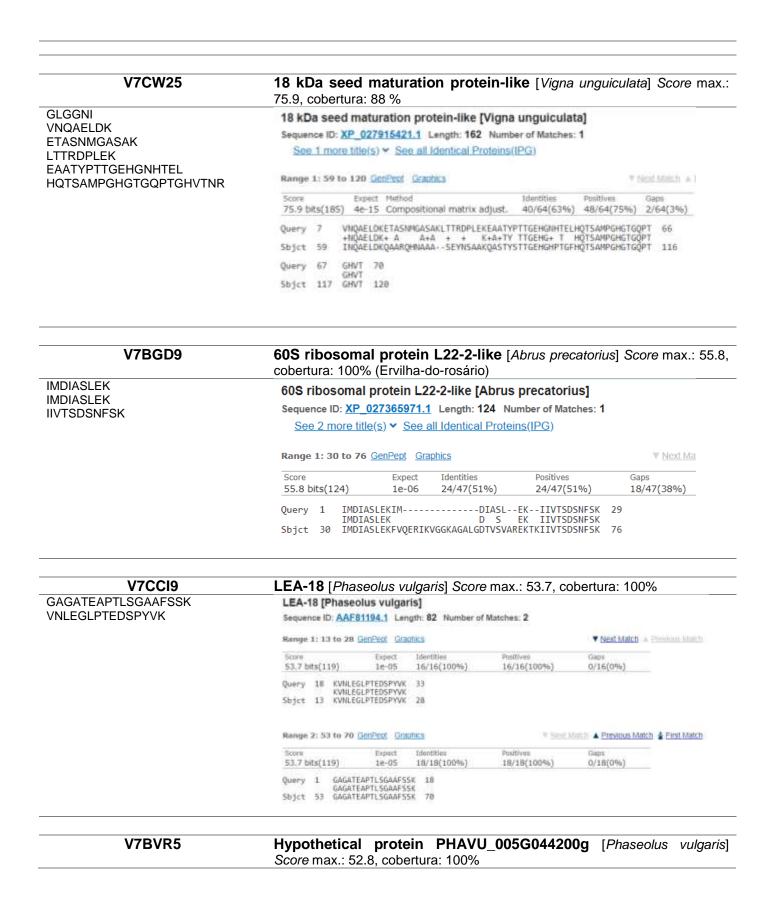
V7CGW9

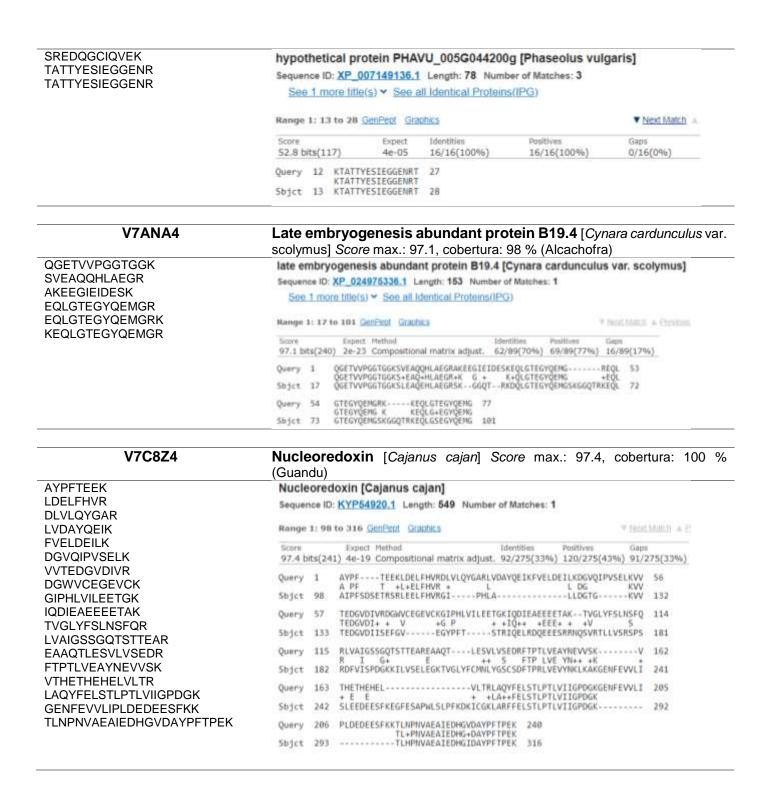
ADP-ribosylation factor 1 [*Populus tremuloides*] *Score* max.: 88,2, cobertura: 100 % (Álamo-trémulo)

TTILYK
MLNEDELR
ILMVGLDAAGK
EAVLLVFANK
NISFTVWDVGGQDK
QDLPNAMNAAEITDK
HYFQNTQGLIFVVDSNDR
LGEIVTTIPTIGFNVETVEYK
HYFQNTQGLIFVVDSNDRDR

ADP-ribosylation factor 1 [Populus tremuloides] Sequence ID: AAO63779.1 Length: 181 Number of Matches: 2 Range 1: 6 to 99 GenPect Graphics

Score 88-2 b	its(217	Expect Hethod 7) 6e-19 Compositional matri	x adjust.	Identities 58/143(41%)	Positives 65/143(45%)	Gaps 69/14	13(48%)
Query	1	TTILYKMLNEDELRILMVGLDAAG T +L ++ +E E+RILMVGLDAAG		FANORISFTVMD	veedok dor www	DIAAE	60
Sbjet	6	TKLLGRLFSEKEMRILMVGLDAAG		L			37
Query	61	ITDKHYFQNTQGLIFVVDSNDRLG		TIGFNVETVEYK TIGFNVETVEYK			103
Sbjct	38	*LI	EIVITIP	TIGFNVETVEYK	NISFTVMDVGGQ0	WIRP	76
Query	104	HYFORTOGLIFVVDSNDRDR HYFORTOGLIFVVDSNDRDR	123				
Shict	77	LWRHYFONTOGLIFVVDSNDRDR	99				


V7BF08


PREDITA: probable mediator of RNA polymerase II transcription subunit 37c [Populus euphratica] *Score*.: 223, cobertura: 86% PREDICTED: probable mediator of RNA polymerase II transcription subunit 37c [Populus euphratica]

LIGDAAK NTTIPTK **CMEPVEK LSKEEIEK DAGVIAGLNVMR VEIIANDQGNR MVNHFVQEFK TVHDVVLVGGSTR** VQQLLQDFFNGK **IINEPTAAAIAYGLDK** NQVAMNPINTVFDAK **ATAGDTHLGGEDFDNR NAVVTVPAYFNDSQR** VFAGPGDKPMIQVSYK **IINEPTAAAIAYGLDKK** VQQLLQDFFNGKELCK MYQGGAGPDMGGAMDDDVP **AGGSGAGPK** SINPDEAVAYGAAVQAAILSGEGNEK GVPQITVCFDIDANGILNVSAEDK **GEGPAIGIDLGTTYSCVGVWQHDR EQVFSTYSDNQPGVLIQVYEGER** NVLIFDLGGGTFDVSLLTIEEGIFEVK

	ts(519)		121/299(40%)	Positives 125/299(41%)	153/299(51	16)	
hery	41	RVEIIANDGGRRMUNHFVQEFKTVHDVVLVGGSTRVQQLLQDFFNGKIINEPTAAAIAVG 100 RVEIIANDGGRRTTPSVV_AFT-D T + L D AA RVEIIANDGGRRTTPSVV_AFT-D - T -ERIGD - AA SH					
lijet	26	RAELIWEGGNE	TTPSYV-AF-TD-	TERLIGD	AA	58	
wery	101	LDKNOVARNETS	(TVF0/	KAT - AGD		130	
bjet	59	HINGVARIEF IN	ITVE DV ITVEDAKALIGARESDI	NSVQGDI/HIPFKVTPGAGD		116	
uery	131	-FD9		INAVVTVPAVENDSQR	VFAGPGDKPH	359	
hjet	117	QFSAEE155HVL	TKMRETAEAYLGTTI	CHAVYTYPAYFNDSQRQATIO		170	
uery	160					193	
hjet	171			RKMVLIFDLGVLVGGSTRI	VQQLLQDFFHG PEVQQLLQDFFHG	229	
very	194			GAGPES INPDEAVAYGAAV		252	
bict	230	KELC		KSIMPDEAVAYGA V		268	

▼ Next Match: A F

Analisando as 496 proteínas identificadas em ambos os genótipo e que não diferiram em expressão, foi possível observar a presença de algumas proteínas relacionadas à defesa de plantas, como duas proteínas contendo domínio Lectina_legB (V7C3R6 e V7C654), nove Lipoxigenases ((V7AS97, V7ATG9, O24320, V7BX14, V7BZF7, V7ASA9, V7BZK0, V7APJ9 e V7ATG3), quatro proteínas contendo

domínio Cupin (V7BFL4, V7CFI9, V7BEF1 e V7BFL2), uma proteína contendo domínio Knot1 (V7BTW4), três proteínas contendo domínio Peptidase A1 (V7BP57, V7BHC4 e V7BPV5), um inibidor de tripsina/quimiotripisina (B3W6M4) e um inibidor de protease cisteínica (V7AK72), além de uma proteína clássica do gênero *Phaseolus*, as faseolinas (V7BBP9). Das 496 proteínas encontradas que não diferiram em expressão entre os genótipos L7/L8 observou-se que 147 proteínas não foram caracterizadas pelo *software* OmicsBox (Tabela suplementar 1).

4.5. Isolamento e visualização de proteínas dos genótipos L7 e L8 de *P. vulgaris*.

4.5.1. Fracionamento das proteínas dos cotilédones do genótipo L7

As proteínas extraídas de cotilédones do genótipo L7 foram fracionadas em uma cromatografia de troca iônica em DEAE-celulose e na figura 24 estão representados os picos obtidos. A fração não retida, eluída com tampão Tris HCl 0,1 M e é onde concentram-se as proteínas básicas e neutras. As proteínas carregadas negativamente foram eluídas com concentrações de NaCl de 0,1, 0,5 e 1,0 M. Os picos que apresentaram maiores absorbâncias a 280 nm foram observados na fração não retida (NR) e na fração retida, eluída com NaCl 0,5 M (R). Devido ao pouco rendimento, não foi possível trabalhar com as frações eluídas com NaCl 0,1 e 1,0 M.

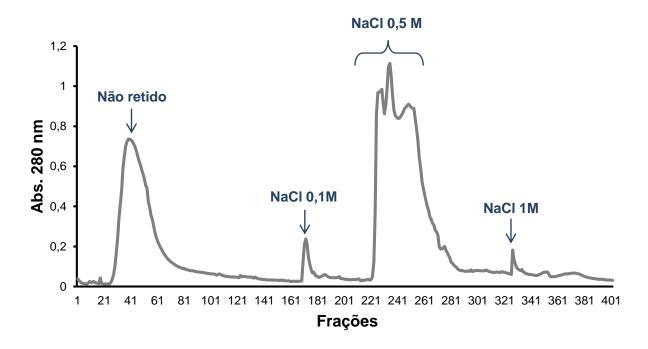


Figura 24 - Perfil cromatográfico do fracionamento das proteínas extraídas da farinha dos cotilédones do genótipo L7 de *P. vulgaris* em troca iônica em DEAE-celulose. A fração não retida apresenta as proteínas eluídas com tampão Tris HCl. As frações retidas foram eluídas com concentrações de NaCl de 0,1, 0,5 e 1,0 M. A cromatografia se processou em fluxo de 1,33 mL/min e foram coletadas frações de 2,66 mL. Os números destacados no eixo x correspondem a quantidade de tubos submetidos aleitura. As absorbâncias foram lidas em 280 nm

4.5.2. Fracionamento de proteínas dos cotilédones do genótipo L8

O fracionamento das proteínas de cotilédones do genótipo L8 em cromatografia de troca iônica em DEAE-celulose apresentou um perfil similar ao observado no genótipo L7. Os picos majoritários foram observados na fração não retida, onde estão as proteínas positivas e neutras e na fração eluída com NaCl 0,5 M. Devido ao baixo rendimento, não foi possível trabalhar com as frações eluídas com NaCl 0,1 e 1,0 M (Fig. 25).

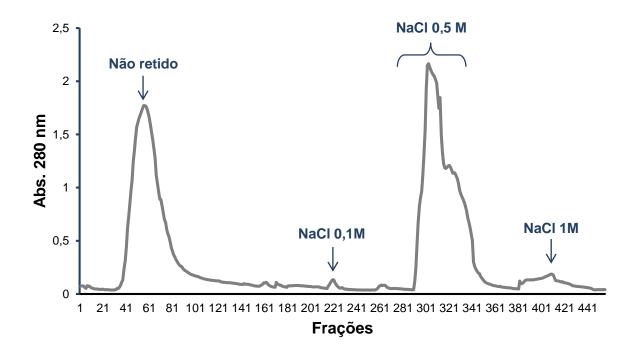


Figura 25 – Perfil cromatográfico do fracionamento das proteínas extraídas da farinha dos cotilédones do genótipo L8 de *P. vulgaris* em troca iônica em DEAE-celulose. A fração não retida apresenta as proteínas eluídas com tampão Tris HCl. As frações retidas foram eluídas com concentrações de NaCl de 0,1, 0,5 e 1,0 M. A cromatografia se processou em fluxo de 1,33 mL/min e foram coletadas frações de 2,66 mL. Os números destacados no eixo x correspondem a quantidade de tubos submetidos aleitura. As absorbâncias foram lidas em 280 nm

4.5.3. Visualização do perfil proteico das frações isoladas dos cotilédones dos genótipos L7 e L8 de *P. vulgaris*

O perfil proteico das frações da cromatografia foi analisado em gel de eletroforese na presença de SDS e o resultado está representado na figura 26. Na amostra das proteínas retidas (eluídas em NaCl 0,5 M) do genótipo L7 (R-L7) foram observadas pelo menos 6 bandas proteicas, com massas moleculares que variaram de 180 a 10 kDa, com banda majoritária de 130 kDa. Na fração não retida (NR-L7) observa-se uma banda majoritária de aproximadamente 35 kDa. A fração retida do genótipo L8 (R-L8) apresentou um perfil bastante similar ao visto na R-L7, com 6 bandas de massas moleculares próximos a 180, 130, 50, 35, 15 e 10 kDa. Na fração não retida (NR-L8) observou-se ao menos 2 bandas majoritárias próximas a 35 e 25 kDa (Fig. 26). Essas bandas foram recortadas do gel e identificadas por espectrometria de massas.

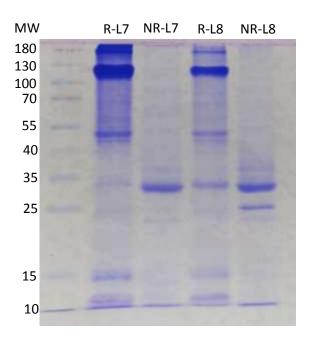


Figura 26 – Visualização do perfil proteico, em gel de eletroforese 12% na presença de SDS (SDS-PAGE), das proteínas obtidas na cromatografia de troca iônica em DEAE-celulose. MW: marcadores de massa molecular. R-L7 proteínas retidas de L7 eluídas com NaCl 0,5 M. NR-L7 proteínas não retidas de L7 eluídas com Tris HCl 0,1 M. R-L8 proteínas retidas de L8 eluídas com NaCl 0,5 M. NR-L8 proteínas não retidas de L8 eluídas com Tris HCl 0,1 M.

4.6. Performance e sobrevivência do inseto *C. maculatus* em sistema de sementes artificiais contendo as frações proteicas isoladas dos genótipos de *P. vulgaris*

As frações proteicas foram incorporadas em sementes artificiais em concentração de 2 % e os efeitos avaliados sobre a eclosão, sobrevivência, massa e tamanho larval. Não houve diferença na taxa de eclosão das larvas 6 DAO (Fig. 27). A sobrevivência larval, avaliada 20 DAO, mostrou que 100 % das larvas das sementes controle sobreviveram, enquanto nas sementes contendo as frações NR e R de ambos os genótipos não houve sobrevivência (Fig. 28). Mesmo mortas, essas larvas foram fotografadas (Fig. 29) e seus tamanhos comparados com os das larvas controle (Fig. 30) onde se observa diminuições de tamanho de aproximadamente 92 % para todos os tratamentos (Fig. 30). As massas das larvas não foram obtidas devido ao tamanho das larvas.

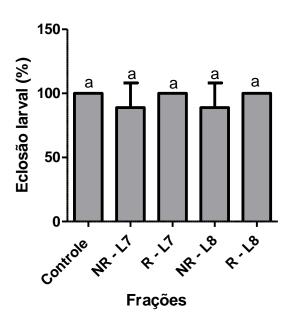


Figura 27 - Percentual de eclosão das larvas de *C. maculatus* 6 DAO (dias após a oviposição) desenvolvidas em sementes artificiais controle ou contendo 2 % das frações proteicas não retidas e retidas do genótipo L7 e L8 de *P. vulgaris*, provenientes da cromatografia de troca iônica. R-L7 fração das proteínas retidas de L7 eluídas com NaCl 0,5 M. NR-L7 fração das proteínas não retidas de L7 eluídas com Tris HCl 0,1 M. R-L8 fração das proteínas retidas de L8 eluídas com NaCl 0,5 M. NR-L8 fração das proteínas não retidas de L8 eluídas com Tris HCl 0,1 M. Os experimentos foram feitos em triplicata independente e os resultados mostrados são as médias obtidas. A presença de letras iguais representa dados estatísticos iguais, de acordo com o teste de *tukey* (p < 0,05).

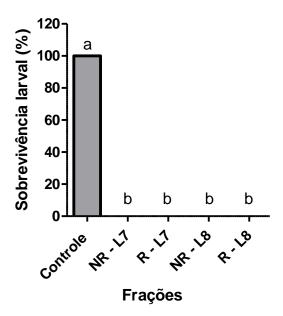


Figura 28 - Percentual de sobrevivência das larvas de *C. maculatus* 20 DAO (dias após a oviposição) desenvolvidas em sementes artificiais controle ou contendo 2 % das frações proteicas não retidas e retidas do genótipo L7 e L8 de *P. vulgaris*, provenientes da cromatografia

de troca iônica. R-L7 fração das proteínas retidas de L7 eluídas com NaCl 0,5 M. NR-L7 fração das proteínas não retidas de L7 eluídas com Tris HCl 0,1 M. R-L8 fração das proteínas retidas de L8 eluídas com NaCl 0,5 M. NR-L8 fração das proteínas não retidas de L8 eluídas com Tris HCl 0,1 M. Os experimentos foram feitos em triplicata independente e os resultados mostrados são as médias obtidas. A presença de letras iguais representa dados estatísticos iguais, de acordo com o teste de *tukey* (p < 0,05).

Figura 29 - Fotos das larvas de *C. maculatus* desenvolvidas nas sementes artificiais controle ou contendo 2 % das frações proteicas não retidas e retidas do genótipo L7 e L8 de *P. vulgaris*, provenientes da cromatografia de troca iônica. As larvas foram fotografadas 20 DAO (dias após a oviposição). R-L7 fração retida de L7, NR-L7 fração não retida de L7, R-L8 fração retida de L8, NR-L8 fração não retida de L8

. Barra = 1 mm.

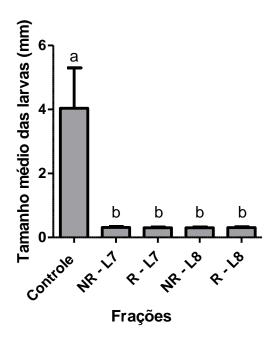


Figura 30 – O gráfico representa o tamanho das larvas (mm) de *C. maculatus* encontradas 20 DAO (dias após a oviposição) em sementes artificiais controle ou contendo 2 % das frações proteicas não retidas e retidas do genótipo L7 e L8 de *P. vulgaris*, provenientes da cromatografia de troca iônica. R-L7 fração das proteínas retidas de L7 eluídas com NaCl 0,5 M. NR-L7 fração das proteínas não retidas de L7 eluídas com Tris HCl 0,1 M. R-L8 fração das proteínas retidas de L8 eluídas com NaCl 0,5 M. NR-L8 fração das proteínas não retidas de L8 eluídas com Tris HCl 0,1 M. O número de larvas analisadas foi de acordo com a quantidade de larvas encontradas em cada semente e os resultados apresentados são as médias obtidas. As letras diferentes estão representando dados estatísticos diferentes, de acordo com o teste de *tukey* (p < 0,05).

4.6.1. Análises bioquímicas das larvas de *C. maculatus* controle e alimentadas com as proteínas fracionadas dos cotilédones dos genótipos de *P. vulgaris*

As análises bioquímicas das larvas desenvolvidas nas sementes artificiais contendo 2 % das frações não retidas e retidas dos genótipos L7 e L8 não foram realizadas devido ao tamanho reduzido das larvas encontradas, elas eram muito pequenas o que impossibilitou à extração.

5. DISCUSSÃO

O inseto *C. maculatus* é de grande interesse econômico, por se tratar de uma praga de sementes armazenadas que infesta um dos principais feijões cultivados no Brasil, o feijão de corda, V. unguiculata (CONAB, 2022; Gallo et al., 2002). Nos últimos anos, os estudos que investigam o potencial tóxico de algumas espécies de sementes ao inseto-praga C. maculatus ficaram mais frequentes. Muitos estudos relataram o potencial tóxico de sementes, como A. lebbeck, cultivares resistentes de V. unquiculata, C. ensiformes, P. lunatus e P. vulgaris para o inseto C. maculatus (Ventury et al., 2022; Ferreira et al., 2021; De Sá et al., 2018, Cruz et al, 2016; Silva et al., 2016; De Sá et al., 2014; Karbache et al, 2011; Silva et al., 2004; Moraes et al., 2000). Esses estudos são fundamentais pois podem fornecer ferramentas para o desenvolvimento de métodos alternativos de controle dessa consequentemente diminuir as perdas das sementes estocadas (Singh e Kaur, 2018; Cardona et al., 1992, Padghan et al., 1992).

As sementes de *P. vulgaris* possuem grande importância econômica devido ao seu alto valor nutricional, sua boa produção e por ser um feijão bastante consumido no mundo, sendo o principal consumido no Brasil (CONAB, 2022; MAPA, 2022; Vaz Patto *et al.*, 2015). Diversos estudos mostraram que tanto tegumentos quanto os cotilédones das sementes de *P. vulgaris* apresentam compostos de defesas bastante eficientes contra insetos-praga, principalmente bruquídeos (Kuns *et al.*, 2019; De Sá *et al.*, 2014; Souza *et al.*, 2011; Kluh *et al.*, 2005; Silva *et al.*, 2004; Minny *et al.*, 1990).

Nesse trabalho são apresentados resultados relacionados à toxicidade da farinha das frações proteicas dos cotilédones de dois genótipos de *P. vulgaris* ao inseto *C. maculatus*.

Visto que em seu ciclo natural, as larvas do inseto *C. maculatus* após atravessarem o tegumento das sementes, completam seu desenvolvimento se alimentando dos cotilédones (Cruz *et al.*, 2016; Bae *et al.*, 2014), se iniciou esse trabalho investigando a toxicidade das farinhas desses tecidos para larvas de *C. maculatus*. Quando incorporadas à dieta artificial das larvas as farinhas dos cotilédones de ambos os genótipos se mostraram altamente tóxicas para o inseto, causando interferência nos parâmetros de desenvolvimento como sobrevivência, massa e tamanho. Esses resultados indicam a presença de compostos tóxicos nesses

tecidos, como previamente mostrado para outros genótipos de *P. vulgaris* (Mantzoucas *et al.*, 2020; De Sá *et al.*, 2014; Oliveira *et al.*, 2014, 1999; Souza *et al.*, 2011).

Em um estudo recente, Mantzoucas *et al.* (2020) mostraram que a farinha de semente de três leguminosas, *P. vulgaris, Vicia faba* e *G. max*, incorporadas à alimentação do besouro *Trogoderma granarium* interferiu negativamente no desenvolvimento e na sobrevivência larval desses insetos, indicando a presença de compostos tóxicos nas farinhas dessas leguminosas. Os efeitos negativos de *P. vulgaris* no desenvolvimento e sobrevivência de insetos também foram observados por De Sá *et al.* (2014), que identificaram uma redução de 40 % na sobrevivência de larvas de *C. maculatus* desenvolvidas em sementes de *P. vulgaris*. Estudos, também demonstraram que cultivares de *P. vulgaris* (cv. manteiga e vermelho), uma linhagem resistente de *V. unguiculata* (IT81D-1053), sementes de *C. ensiformes* e *D. altissima* interferiram negativamente no desenvolvimento e na sobrevivência larval do inseto *C. maculatus*, provocando até 100 % de mortalidade (Oliveira *et al.*, 2014, 1999; Souza *et al.*, 2011), o que corroboram com os dados apresentados nesse trabalho.

A massa e o tamanho das larvas desenvolvidas nas sementes artificiais contendo as farinhas dos cotilédones foram bastante afetados, com reduções superiores a 90% na massa e no tamanho das larvas desenvolvidas nas sementes contendo a farinha de cotilédones do genótipo L7 e uma redução ainda maior nas larvas desenvolvidas nas sementes contendo a farinha de cotilédones do genótipo L8, chegando a reduzir mais de 84% a massa e 50% o tamanho das larvas de *C. maculatus*. Alguns autores, já descreveram que sementes de cultivares resistentes de *V. unguiculata* e sementes de soja foram capazes de influenciar negativamente na massa e tamanho de larvas de *C. maculatus* e *Z. subfasciatus*, demonstrando interferências semelhantes as observadas em nossos estudos (Grazziotin *et al.*, 2020; Silva *et al.*, 2018; Cruz *et al.*, 2016).

Nossos estudos também mostraram que a presença de farinha de cotilédones dos genótipos L7 e L8 de *P. vulgaris* não só interferiu na sobrevivência, massa e tamanho das larvas, como também causou alterações nos níveis de compostos bioquímicos e enzimas essenciais para o metabolismo das mesmas. Para tentarmos entender melhor as alterações nas concentrações dessas moléculas e atividades

enzimáticas, os cálculos foram realizados em níveis totais por larva e também em relação a massa das larvas, sendo possível inferir se a alteração está relacionada unicamente ao fato da larva ser menor, ou se há um desbalanço nos níveis dessas moléculas. Os níveis totais por larva de glicose, proteínas totais, triacilglicerois e das enzimas lipases das larvas alimentadas com farinha de cotilédone dos genótipos L7 e L8 de *P. vulgaris* encontraram-se muito reduzidos em relação as larvas controle, resultados similares foram observados por De Sá et al (2018) em larvas de C. maculatus desenvolvidas em sementes de C. ensiformes. Essa redução nos níveis desses compostos pode estar associada com a redução da massa e tamanho das larvas encontradas nas sementes com maiores concentrações de farinha de cotilédones dos genótipos L7 e L8. Dessa forma, quando os cálculos foram feitos levando em consideração a massa das larvas (por mg de larva) foi possível observar um resultado contrário em algumas dessas moléculas. Os níveis por mg de larvas de glicose, triacilglicerois e colesterol das larvas desenvolvidas nas sementes artificiais contendo farinha de cotilédones dos genótipos L7 e L8 estavam superiores aos das larvas desenvolvidas nas sementes controle. Entretanto, esse aumento de glicose por mg de larva só foi observado nas larvas desenvolvidas nas sementes contendo 10 % de farinha de cotilédone do genótipo L7. Os níveis de proteínas totais solúveis por mg de larva não apresentaram variação significativa em larvas desenvolvidas nas sementes contendo farinha de cotilédone dos genótipos. Embora a atividade de lipase por larvas tenha apresentado resultado similar nas larvas de ambos os genótipos, nos resultados obtidos levando em consideração a massa das larvas (por mg de larva) foi possível observar que a atividade de lipase nas larvas desenvolvidas nas sementes artificiais contendo farinha de cotilédones do genótipo L7 estava reduzida em relação as larvas desenvolvidas nas sementes controle, enquanto que as larvas desenvolvidas nas sementes contendo farinha do genótipo L8 não apresentaram variação significativa na atividade dessa enzima.

As alterações nas atividades digestivas essências de larvas com 20 DAO de *C. maculatus*, como proteases cisteínicas e α-amilase, também foram observadas. As atividades de proteases cisteínicas das larvas alimentadas com farinha dos cotilédones do genótipo L7 foram maiores em relação as larvas controle, demonstrando um dado diferente dos apresentados por De Sá *et al* (2014 e 2018) e

Cruz *et al* (2016). No entanto, as atividades de proteases cisteínicas e α-amilase observadas por mg de larvas apresentou um aumento na atividade dessas enzimas nas larvas desenvolvidas nas sementes artificiais contendo farinha de cotilédones de ambos os genótipos o que corroboram com os resultados observados por De Sá *et al* (2014 e 2018) em sementes de *P. vulgaris* (cv. vermelho) e *C. ensiformes* e Cruz *et al* (2016) em sementes de *V. unguiculata.* Dessa forma, acredita-se que a presença de farinha dos cotilédones dos genótipos L7 e L8 pode causar um retardo no desenvolvimento das larvas fazendo com que as larvas tenham um atraso em seu desenvolvimento fisiológico, resultados semelhantes aos observados por Silva, 2019.

Muitos estudos têm investigado a presença de compostos tóxicos para insetos-praga em sementes afim de entender os mecanismos de toxicidades dessas sementes e o funcionamento de seu arsenal biológico (Souza et al., 2011; Silva et al., 2016; Ferreira et al., 2021; Ventury et al., 2022). Acredita-se que com o entendimento desses mecanismos de toxicidades seja possível desenvolver métodos de controle alternativos que possibilitem diminuir o uso de inseticidas (e consequentemente as contaminações causadas por esses compostos químicos) e a perda de sementes estocadas (Cardona et al., 1992; Padghan et al., 1992; Lorini, 1999; Karbache et al., 2011; Singh e Kaur, 2018). Um passo importante para o entendimento das defesas naturais das sementes é a identificação das suas macromoléculas constituintes e tentar relacioná-las à defesa. Dessa forma, foi realizado um estudo de proteômica comparativa entre as sementes dos genótipos L7 e L8 de forma a identificar as suas proteínas constituintes e tentar relacionar com a toxicidade para o inseto. A partir desse estudo, foram identificadas um total de 615 proteínas, sendo 496 presentes nos mesmos níveis em ambos nos genótipos. Dentre as proteínas que não diferiram em expressão entre L7 e L8, foi possível observar a presença de algumas proteínas clássicas de defesa de sementes, como as proteínas com domínio lectina_legB, as faseolinas (proteínas de reserva clássicas de Phaseolus), as lipoxigenases e proteínas com domínio peptidases (Silva et al., 2002; Silva et al., 2004; Camaroti et al., 2018; Kuns et al., 2019).

Um total de 8 proteínas foram encontradas unicamente nos cotilédones do genótipo L8, entretanto nenhuma delas foi identificada como relacionada a defesas. Das 9 proteínas encontradas unicamente em L7 foram encontradas 3 proteínas

relacionadas à defesa de plantas, uma com domínio lectina_legB e duas lipoxigenases. Foram encontradas um total de 40 proteínas aumentadas (UP) em L7 e 62 diminuídas (DOWN) em L7 relacionadas à defesa. Nas análises da proteômica comparativa foi possível identificar algumas proteínas relacionadas à defesa de plantas, como proteínas com domínio lectina_legB, faseolinas, proteínas contendo o domínio peptidase A1, albumina-2S e inibidor de tripsina.

As lectinas são proteínas de armazenamento que estão presentes em vários órgãos e tecidos vegetais (Michiels *et al.*, 2010). Entretanto, muitos estudos já mostraram seus efeitos tóxicos para alguns insetos. Por se tratarem de proteínas com afinidade a carboidratos específicos, acredita-se que elas possam se ligar a glicoproteínas específicas no intestino de larvas de insetos, dificultando a digestão e aumentando a taxa de mortalidade larval (Macedo *et al.*, 2002; Freitas *et al.*, 2011; Pinto *et al.*, 2011; Camaroti *et al.*, 2018). Macedo *et al.* (2007), mostraram que lectinas extraídas de folhas de *B. monandra* introduzidas pela alimentação de bruquídeos foram responsáveis por causar a morte de 50 % das larvas, mesmo em concentrações muito baixas.

As faseolinas também são importantes proteínas de reservas do gênero *Phaseolus*, são globulinas 7S similares as vicilinas, que estão também associadas a defesas de sementes (Rossi *et al.*, 2017). Elas estão presentes tanto nos tegumentos quanto nos cotilédones das sementes e já são conhecidas por serem tóxicas para as larvas de *C. maculatus* (Yunes *et al.* 1998; Silva *et al.*, 2004). Faseolinas extraídas de sementes de *P. lunatus* já foram testadas contra *C. maculatus* e foi possível observar que a ingestão dessas proteínas aumentou os níveis de estresse oxidativo de células epiteliais do intestino médio das lavas (Kuns *et al.*, 2019). Acredita-se que a ação tóxica das faseolinas, assim como das vicilinas, esteja relacionada a sua afinidade a quitina. Quando ingeridas pelas larvas dos insetos elas se ligam a estruturas quitinosas presentes no intestino das larvas, interferindo negativamente na digestão, absorção de nutrientes e na reciclagem das enzimas digestivas desses insetos (Sales *et al.*, 2001; Souza *et al.*, 2012; Ferreira *et al.*, 2020; Miranda *et al.*, 2020).

Peptidases são enzimas responsáveis pela clivagem de ligações peptídicas. Assim como outras proteases, as peptidades podem estar relacionadas à defesa de plantas devido à sua função de clivagem proteolítica (Cândido *et al.*, 2011). Quando

associadas a defesas de plantas, as proteases tendem a atacar o intestino das larvas dos insetos, se ligando a matriz peritrófica. Uma protease cisteínica extraída de sementes de *Albizia lebbeck* foi capaz de se ligar ao intestino de larvas de *C. maculatus* causando morte das larvas (Silva *et al.*, 2016).

As albuminas 2S são importantes proteínas de armazenamento encontradas nas sementes, pois são fontes de aminoácidos durante a germinação. Entretanto, essas proteínas possuem papel importante na defesa de sementes, podendo atuar em muitos casos como inibidores de α-amilase e proteases serinas (Souza, 2020). Além de suas atividades inibitórias, algumas albuminas 2S de sementes possuem capacidade de se ligar à quitina, como no caso de isoformas de albuminas 2S encontradas em sementes de Moringa oleífera (Garcia et al., 2019). Proteínas com afinidade a quitina são essenciais para defesa de sementes, principalmente contra o ataque de insetos, uma vez que a maioria dos insetos possuem, em seu intestino médio, uma matriz peritrófica constituída de quitina (Ruppert et al., 2005; Brusca e Brusca, 2007). Muitos estudos já relataram a toxicidade de proteínas com afinidade à quitina para principais pragas de sementes armazenadas (Paes et al., 2008; Souza et al., 2010; Miranda et al., 2020; Ferreira et al., 2021). Albuminas 2S extraídas de sementes de Ricinus communis (mamona) incorporadas à alimentação de C. maculatus, Z. subfasciatus e T. molitor, inibiram a atividade de α-amilase das larvas desses insetos e provocou uma diminuição de 20 % no crescimento de larvas de C. maculatus (Nascimento et al., 2011).

Muitos estudos têm associado os inibidores de proteases (IP) à defesa de plantas contra insetos-praga, devido a sua capacidade de inibir proteases digestivas dessas pragas (Cândido et al., 2011). Inibidores de proteases serínicas e inibidores de proteases cisteínicas já foram identificados em diversas sementes, como *Vigna umbellata* e *Enterolobium contortisiliquum* (Katoch et al., 2015, Nunes et al., 2020). Estudos já mostram que Inibidores de tripsina encontrados em sementes de *Albizia lebbeck* apresentaram toxicidade para larvas do inseto *Helicoverpa armígera* (Sharma et al., 2012; Ávila et al., 2013). Inibidores de proteases cisteínicas extraídos de sementes também já foram apresentados como tóxicos para insetos, como *H. postiça, C. maculatus* e *Z. subfasciatus* (Elden, 2000; Monteiro Junior et al., 2017; Nunes et al., 2020).

Na tentativa de identificar proteínas ou frações proteicas que possam está envolvidas na toxicidade das farinhas dos cotilédones dos genótipos para o inseto, as proteínas das farinhas foram fracionadas em DEAE-celulose. A fração não retida de L7 mostrou um perfil com apenas uma banda majoritária, próxima a 35 kDa, enquanto a fração retida mostrou um perfil mais complexo, com bandas majoritárias entre 180 e 10 kDa. As frações obtidas do genótipo L8 apresentaram perfil similar ao observado em L7, sendo que na fração não retida observa-se um perfil com duas bandas, com 35 e 25 kDa. As bandas majoritárias encontradas nas frações não retidas dos genótipos L7 e L8 apresentam uma massa aproximada de 35 kDa, bem próximas a massa de quitinases isoladas de sementes de *P. vulgaris* por Ye e Ng em 2002 que eram de 28 e 32 kDa. As quitinases possuem massas moleculares entre 28 e 35 kDa e ponto isoelétrico próximo de 8,9 (Ye e Ng, 2002; Li *et al.*, 2019).

As quitinases são enzimas que possuem a capacidade de degradar quitina e por conta disso têm sido associadas a defesa de plantas (Duo-chuan, 2006; Uzma-Jalil *et al.*, 2015). Muitos estudos demonstraram que a presença de quitinases na alimentação de alguns insetos provocou efeitos deletérios no desenvolvimento, causando redução da massa e morte de larvas (Santos *et al.*, 2007; Silva *et al.*, 2016). Quitinases extraídas tanto de sementes de *G. max* quanto de *V. unguiculata* apresentaram efeitos negativos em larvas de *C. maculatus*, provocando uma redução de até 70 % na sobrevivência larval (Gomes *et al.*, 1996; Silva *et al.*, 2018; Ferreira *et al.*, 2021).

As bandas majoritárias encontradas nas frações retidas (eluídas em 0,5 M de NaCl) correspondem a proteínas ácidas. As vicilinas são proteínas ácidas encontradas em grandes quantidades em sementes. Em 1993, Macedo *et al.* isolaram vicilinas de cotilédones de *V. unguiculata* com massas moleculares entre 36 e 66 kDa. As faseolinas são vicilinas encontradas em grandes quantidades em sementes de *P. vulgaris* com massas moleculares entre 43 e 53 kDa.

Arcelinas (massa molecular entre 34 e 37 kDa) e inibidores de tripsina (entre 20 e 30 kDa) também correspondem a proteínas ácidas encontradas em sementes de *P. vulgaris* (Osborn *et al.*, 1985; Hartweck *et al.*, 1991; Alves *et al.*, 2010). Em um estudo com feijão indiano selvagem (*Lablab purpureus*), Janarthanan *et al.* (2008) isolaram e identificaram arcelinas semelhantes à de *P. vulgaris*, com massas

moleculares entre 32 e 36 kDa, que quando testadas em *O. surinamensis* e *R. dominica* resultou no atraso do desenvolvimento e na morte das larvas.

As frações, de ambos os cultivares, obtidas na cromatografia foram incorporadas em sementes artificiais na concentração de 2 % para análise da toxicidade para o inseto. Todas as frações testadas se mostraram altamente tóxicas para as larvas do inseto, resultando em 100 % de mortalidade larval 20 DAO. Mesmo não tendo sido possível a identificação das proteínas presentes nessas frações, nossos resultados se mostram bastante promissores, principalmente com relação as frações não retidas na coluna, por apresentarem poucas bandas proteicas. Alguns trabalhos realizados anteriormente já apontam várias proteínas isoladas de sementes de P. vulgaris como tóxicas para insetos. Faseolinas extraídas de sementes de P. vulgaris, quando inseridas à alimentação provocaram estresse oxidativo em células epiteliais do intestino de larvas de C. maculatus, causando alterações no desenvolvimento e morte das larvas (Silva et al., 2004; Kuns et al., 2019). Minny et al., (1990) observaram que arcelinas extraídas de sementes de feijão comum também se mostraram tóxicas para insetos, provocando morte das larvas de Z. subfasciatus. Outros autores também observaram a presença de compostos tóxicos em sementes de P. vulgaris (Souza et al., 2011; De Sá et al., 2014; Veiga de Andrade et al., 2020).

Nosso conjunto de resultados mostrou que os genótipos L7 e L8 de *P. vulgaris* possuem nos seus cotilédones proteínas tóxicas para o inseto *C. maculatus*. A identificação das proteínas tóxicas dessas sementes e os mecanismos de toxicidade para esse bruquideo pode ser de grande importância para desenvolver estratégias para o controle dessa praga, minimizando os grandes prejuízos causados na produção de sementes.

6. CONCLUSÕES

- As farinhas dos cotilédones de sementes dos genótipos L7 e L8 de *P. vulgaris* interferiram no desenvolvimento das larvas do inseto *C. maculatus*, diminuindo principalmente a massa e no tamanho das larvas de 20 DAO.
- As larvas desenvolvidas nas sementes contendo as farinhas dos genótipos apresentaram alterações nas quantidades de glicose, proteínas, triacilglicerídeos, colesterol e nas atividades das enzimas lipase, amilase e proteases cisteínicas.
- A análise de proteômica comparativa dos genótipos L7 e L8 identificou 615 proteínas. Um total de 496 proteínas estavam presentes em ambos os genótipos com níveis de expressão similares. 40 proteínas estavam aumentadas (UP) e 62 proteínas estavam diminuídas (DOWN) no genótipo L7. Das proteínas encontradas, 9 estavam presentes unicamente no genótipo L7 e 8 eram únicas do genótipo L8.
- As farinhas dos cotilédones de ambos os genótipos apresentaram proteínas básicas/neutras que não ficaram retidas na coluna de DEAE-celulose como proteínas ácidas, que se ligaram a matriz.
- A fração não retida de L-7 mostrou uma banda proteica majoritária, de aproximadamente 35 kDa, enquanto a fração retida apresentou pelo menos 6 bandas proteicas com massas moleculares entre 180 e 10 kDa.
- A fração não retida de L-8 mostrou duas bandas proteicas majoritárias de aproximadamente 35 e 25 kDa, enquanto a fração retida apresentou pelo menos 6 bandas proteicas com massas moleculares entre 180 e 10 kDa.
- As análises de toxicidade mostraram que as frações não retidas e retidas de ambos os cultivares, em concentração de 2 %, reduziram 100 % a sobrevivência das larvas do inseto 20 DAO.

7. REFERÊNCIAS

- Alves M, Chaves I, Carrilho D, Veloso M, Ricardo CP. Detection of novel trypsin inhibitors in the cotyledons of *Phaseolus vulgaris* seeds. **Journal of Plant Physiology**. v. 167, p. 848-854, 2010.
- Andrade EKV, Rodrigues R, Bard GCB, Pereira LS, Ventury KE, Cavalcanti TFM, Oliveira AEA, Souza TAM, Gomes VM. Identification, biochemical characterization and biological role of defense proteins from common bean genotypes seeds in response to *Callosobruchus maculatus* infestation. **Journal of Stored Products Research**. v. 87, p. 101580, 2020.
- Ávila CJ, Vivan LM, Tomquelski GV. Ocorrência, aspectos biológicos, danos e estratégias de manejo de *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae) nos sistemas de produção agrícolas. **Embrapa** (Circular Técninca 23), ISSN 1679-0464, 2013.
- Barrett AJ. Proteases. Current Protocols in Protein Science. v. 21, p. 21.1, 2000.
- Beck C W, Blumer LS. A Handbook on Bean Beetles, *Callosobruchus maculatus*. **National Science Foundation.** p. 1–17, 2014.
- Brain-Isasi S, Álvarez-Lueje A, & Higgins T. Heterologous expression of an α-amylase inhibitor from common bean (*Phaseolus vulgaris*) in *Kluyveromyces lactis* and *Saccharomyces cerevisiae*. **Microbial cell factories**. v. 16, p. 110, 2017.
- Brusca RC, Brusca GJ. **Invertebrados**. 2a ed. Rio de Janeiro: Editora Guanabara-Koogan, 2007.
- Burrieza, HP, Rizzo AJ, Vale EM, Silveira V, Maladonado S. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. **Food Chemistry**. v. 293, p. 299–306, 2019.
- Camaroti JRSL, de Almeida WA, do Rego Belmonte B, de Oliveira APS, de Albuquerque Lima T, Ferreira MRA, Paiva PMG, Soares LAL, Pontual EV, Napoleão TH.. *Sitophilus zeamais* adults have survival and nutrition affected by *Schinus terebinthifolius* leaf extract and its lectin (SteLL). **Industrial Crops and Products**. v. 116, p. 81–89, 2018.
- Cardona C, Dich K, Posso CE, Ampofo K, Nadhy SM. Resistance of a common bean (*Phaseolus vulgaris* L.) cultivar to the post-harvest infestation by *Zabrotes subfasciatus* (Bohemann) (Coleoptera: Bruchidae). Storage tests. Trop. **Pest Mannagement**. v. 38, p. 173-175, 1992.
- Cardoso, M. J. Bastos, E. A. Andrade Junior, A. S. De Athayde Sobrinho, C. *FeijãoCaupi*: o produtor pergunta, a Embrapa responde. Brasília: Embrapa, p. 244, 2017.

- Companhia Nacional de Abastecimento (CONAB) 2018. **Acompanhamento da Safra Brasileira de Grãos**, Brasília, v. 4, Safra 2016/17, n. 11, décimo primeiro levantamento, ago. 2017. http://www.conab.gov.br. Acesso em: 10 abr. 2019.
- Companhia Nacional de Abastecimento (CONAB) 2022. **Boletim de monitoramento** agrícula: cultivos de inverno e verão. 2021/2022 Décimo Levantamento.
- Cândido ES, Pinto MFS, Pelegrini PB, Lima TB, Silva ON, Pogue R, Grossi-de-Sá MF, Franco OL. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. **FASEB Journal**. v. 25, p. 3290–3305, 2011
- Cruz LP, De Sá LFR, Santos LA; Gravina GA, Carvalho AO, Fernandes KVS, Freire-Filho FR, Gomes VM, Oliveira AEA. Evaluation of resistance in different cowpea cultivars to *Callosobruchus maculatus* infestation. **Journal of Pest Science**. v. 89, p. 117-128, 2016.
- Da Silva RR, do Couto Santos R. Pest Control: Can Chitinases Help To Reduce Pesticide Use? **Journal of Agricultural and Food Chemistry**. v. 67, p. 8071-8073, 2019.
- Dantzger M, Vasconcelos IM, Scorsato V, Aparicio R, Marangoni S, Macedo ML. Bowman-Birk proteinase inhibitor from *Clitoria fairchildiana* seeds: Isolation, biochemical properties and insecticidal potential. **Phytochemistry**. v. 118, p. 224-235, 2015.
- De Sá LFR, Wermelinger TT, Ribeiro ES, Gravina GA, Fernandes KVS, Xavier-Filho J, Venancio TM, Rezende GL, Oliveira AEA. Effects of *Phaseolus vulgaris* (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil *Callosobruchus maculatus* (Coleoptera: Bruchidae). **Journal of Insect Physiology**. v. 60, p. 50–57, 2014.
- De Sá LFR, Ventury KE, Machado Olga LT, Fernandes KVS, Xavier-filho J, Oliveira AEA. Toxic effect of *Canavalia ensiformis* seed coat on larval development of *Callosobruchus maculatus*. **Journal of Pest Science**, v. 91, n. 1, p. 313–326, 2018.
- Distler U, Kuharev J, Navarro P, Levin Y, Schild H, Tenze SI. Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. **Nature Methods**, v. 11, n. 2, p. 167–170, 2014.
- Distler U, Kuharev J, Navarro P, Tenze SI.. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. **Nature Protocols**, v. 11, n. 4, p. 795–812, 2016.
- Duo-Chuan L. Review of fungal chitinases. **Mycopathologia**. v. 161, p. 345–360, 2006. Edwards O, Singh KB. Resistance to insect pests: What do legumes have to

offer?. **Euphytica.** v. 147, p. 273–285, 2006.

Elden TC. Influence of a cysteine proteinase inhibitor on alfalfa weevil (Coleoptera: Curculionidae) growth and development over successive generations. **Journal of Entomological Science.** v. 35, p. 70-76, 2000.

- El Sheikha AF. Tracing insect pests: is there new in molecular techniques? **Insect Molecular Biology**. v. 28, n. 6, p. 759–772, 2019.
- FAO (Food and Agriculture Organization of the United Nations). **Seeds in Emergencies**. Rome, Italy: Food and Agriculture Organization of the United Nations. v. 202, 2010.
- **FAO (Food And Agriculture Organization Of The United Nations).** Disponível em: < http://www.fao.org/sustainability/en/ Acesso em: 6 nov. 2019.
- FAO (Food And Agriculture Organization Of The United Nations), 2019. Disponível em: http://www.fao.org/sustainability/en/> Acesso em: Jul. 2020.
- Ferreira SR, Rocha MM, Damasceno-Silva KJ, Ferreira ATS, Parales J, Fernandes KVS, Oliveira AEA. The resistance of the cowpea cv. BRS Xiquexique to infestation by cowpea weevil is related to the presence of toxic chitin-binding proteins. **Pesticide biochemistry and physiology**. v. xx, p. xx-xx, 2020.
- Franco OL, Santos RC, Batista JNA, Mendes ACM, Araújo MAM, Monnerat RG, Grossi-de-Sá MF, Freitas SM. Effects of black-eyed pea trypsin/chymotrypsin inhibitor on proteolytic activity and on development of *Anthonomus grandis*. **Phytochemistry**. v. 63, p. 343–349, 2003.
- FREITAS, M. 2011. A Influência do Armazenamento de Sementes na Qualidade de Plantio. Disponível em: https://www.pioneersementes.com.br/blog/59/a-influencia-do-armazenamento-de-sementes-na-qualidade-de-plantio.
- Gallo D, Nakano O, Neto SS, Carvalho RPL, Batista GC, Berti Filho E, Parra JRP, Zucchi RA, Alves SB, Vendramim JD, Marchini LC, Lopes JRS, Omoto C. **Entomologia Agrícola**. p. 920, 2002.
- Garcia TB, Soares AA, Costa JH, Costa HPS, Neto JXS, Rocha-Bezerra LCB, Silva FDA, Arantes MR, Sousa DOB, Vasconcelos IM, Oliveira JTA. Expressão gênica e localização espaço-temporal de proteínas antifúngicas ligantes de quitina durante o desenvolvimento e germinação de sementes de Moringa oleífera. **Planta**. v. 249, p. 1503-1519, 2019.
- Gomes, V. M.; Oliveira, A. E. A.; Xavier-Filho, J. Chitinase and alpha beta-1,3-glucanase isolated from the seeds of cowpea (*Vigna unguiculata* L Walp) inhibit the growth of fungi and insect pests of the seed. **Journal of the Science of Food and Agriculture.** v. 72, p. 86-90, 1996.
- Grazziotin MAGD, Cabral GB, Ibrahim AB, Machado RB, Aragão FJL. Expression of the Arcelin 1 gene from *Phaseolus vulgaris* L. in cowpea seeds (*Vigna unguiculata* L.) confers bruchid resistance. **Annals of Applied Biology**. v. 176, p. 268-274, 2020.
- Gupta M, Sharma P, Nath AK. Purification of a novel α-amylase inhibitor from local Himalayan bean (*Phaseolus vulgaris*) seeds with activity towards bruchid pests and

- human salivary amylase. **Journal of Food Science and Technology.** v. 51, p. 1286-1293, 2014.
- Haddad EH, Tanzman JS. What do vegetarians in the United States eat? **American Journal** of Clinical Nutrition. v. 78, p. 626S-632S, 2003.
- Han, C; Yang, P. Estudos sobre os mecanismos moleculares da germinação de sementes. **Proteomics.** v. 15, p. 1671-1679, 2015.
- Hartweck KM, Vogelzang RD, Osborn TC. Characterization and Comparison of Arcelin Seed Protein Variants from Common Bean. **Plant physiology**. v. 97, p. 204-211, 1991.
- Hernandez-Valladares M, Aasebo E, Mjaavatten O, Vaudel M, Bruserud O, Berven F, Selheim F.. Reliable FASP-based procedures for optimal quantitative proteomic and phosphoproteomic analysis on samples from acute myeloid leukemia patients. **Biological Procedures Online**, v. 18, p. 1–10, 2016.
- Janarthanan S, Suresh P, Radke G, Morgan TD, Oppert B. Arcelins from an Indian Wild Pulse, Lablab purpureus, and Insecticidal Activity in Storage Pests. **Journal of Agricultural and Food Chemistry**. v. 56, p. 1676-1682, 2008.
- Jones AL. Phaseolus Bean: Post-harvest Operations. **Food and Agriculture Organization of the United Nations**, 1999.
- Karbache F, Mouhouche F, Lessard FF. Deterrent and insecticidal properties of bean seed (*Phaseolus vulgaris* L.) whole meal or protein extract incorporated into the diet of *Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae). **Journal of Stored Products Research**. v. 47, p. 197–203, 2011.
- Katoch R, Sharma K, Singh KS, Thakur N. Evaluation and characterization of trypsin inhibitor from rice bean with inhibitory activity against gut proteases of *Spodoptera litura*. **Zeitschrift für Naturforschung**. v. 70, p. 287-295, 2015.
- Kluh I, Horn M, Hýblová J, Hubert J, Dolecková-Maresová L, Voburka Z, Kudlikova I, Kocourek F, Mares M. Inhibitory specificity and insecticidal selectivity of a-amylase inhibitor from *Phaseolus vulgaris*. **Phytochemistry.** v. 66, p. 31–39, 2005.
- Kunz D, Oliveira GB, Brascher TC, Samuels RI, Macedo MLR, Souza LF, Dafré AL, Silva CP. Phaseolin ingestion affects vesicular traffic causing oxidative stress in the midgut of Callosobruchus maculatus larvae. Comparative Biochemistry and Physiology. Part B 228, p. 34–40, 2019.
- Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. **Nature**. v. 227, p. 680-685, 1970.

- Lewis VR. Alternative control strategies for termites. **Journal of Agricultural Entomology**. v. 14, p. 291–307, 1997.
- Li C, Li X, Bai C, Zhang Y, Wang Z. A chitinase with antifungal activity from naked oat (*Avena chinensis*) seeds. **Journal of food biochemistry**. v. 43, p. 12712, 2019.
- Lipecka J, Chhuon C, Bourderioux M, Bessard MA, van Endert P, Edelman A, Guerrera IC.. Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP). **Proteomics**, p. 1–13, 2016.
- Lorini I. **Pragas de grãos de cereais armazenados**. [s.l.] Passo Fundo: Embrapa Trigo, 1999. Lorini I, krzyzanowski FC, De Barros J, Ademir FN, Henning a, Henning FA. **Manejo integrado de pragas de grãos e sementes armazenadas**. 1ª ed. Brasília: Embrapa, 2015.
- Macedo MLR, Andrade LBS, Moraes RA, Xavier-Filho J. Vicilin variants and the resistance of cowpea (*Vigna unguiculata*) seeds to the cowpea weevil (*Callosobruchus maculatus*). **Comparative Biochemistry and Physiology**. v. 105, p. 88–94, 1993.
- Macedo MLR, das Graças Machado Freire M, da Silva MB, Coelho LC. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against *Anagasta kuehniella* (Lepidoptera: Pyralidae), *Zabrotes subfasciatus* and *Callosobruchus maculatus* (Coleoptera: Bruchidae). **Comparative Biochemistry and Physiology.** Part A, v. 146, p. 486–498, 2007.
- Macedo MLR, das Graças Machado Freire M, Novello JC, Marangoni S. Talisia esculenta lectin and larval development of *Callosobruchus maculatus* and *Zabrotes subfasciatus* (Coleoptera: Bruchidae). **Biochimica et Biophysica Acta**. v. 1571, p. 83 88, 2002.
- Machuka JS, Okeola OG, Chrispeels MJ, Jackai LEN. The African yam bean seed lectin affects the development of the cowpea weevil but does not affect the development of larvae of the legume pod borer. **Phytochemistry**. v. 53, p. 667-674, 2000.
- Mantzoukas S, Korbou G, Magita A, Eliopoulos PA, Poulas K. Leguminous Seeds Powder Diet Reduces the Survival and Development of the *Khapra beetle*, *Trogoderma granarium* Everts (Coleoptera: Dermestidae). **Biology**. v. 9, p. 204, 2020.
- MAPA (Ministério da Agricultura, Pecuária e Abastecimento) 2018. Plano Nacional de Desenvolvimento da Cadeia do Feijão e Pulses, Brasília. http://www.agricultura.gov.br.> Acesso em: 26 agost. 2019.
- MAPA (Ministério da Agricultura, Pecuária e Abastecimento) 2022. Sumário Executivo Feijão, Janeiro-2022. http://www.agricultura.gov.br.. Acesso em: 18 jan. 2022.
- Michaud D, Nguyen-Quoc B, Bernier-Vadnais N, Faye L, Yelle S. Cysteine proteinase forms in sprouting potato tuber. **Plant Physiology**. v. 90, p. 497-503, 1994.

- Michiels K, Van Damme EJM, Smagghe G. Plant-insect interactions: what can we learn from plant lectins? Arch. **Insect Biochemistry and Physiology**. v. 73, p. 193–212, 2010.
- Minny BHP, Gatehouse AMR, Dobie P, Dendy J, Cardona C, Gatehouse JA. Biochemical bases of seed resistance to *Zabrotes subfasciatus* (bean weevil) in *Phaseolus vulgaris* (common bean): a mechanism for arcelin toxicity. **Journal Insect Physiology**. v. 36, 757–761, 1990.
- Miranda MRA, Uchôa AF, Ferreira SR, Ventury KE, Costa EP, Carmo PRL, Machado OLT, Fernandes KVS, Oliveira AEA. Chemical Modifications of Vicilins Interfere with Chitin-Binding Affinity and Toxicity to *Callosobruchus maculatus* (Coleoptera: Chrysomelidae) Insect: A Combined In Vitro and In Silico Analysis. **JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY**, v. 68, p. 5596-5605, 2020.
- Monteiro Júnior JE, Valadares NF, Pereira HD, Dyszy FH, da Costa Filho AJ, Uchôa AF, de Oliveira AS, da Silveira Carvalho CP, Grangeiro TB. Expression in Escherichia coli of cysteine protease inhibitors from cowpea (*Vigna unguiculata*): The crystal structure of a single-domain cystatin gives insights on its thermal and pH stability. **International Journal of Biological Macromolecules**. v. 102, p. 29–41, 2017.
- Moraes RA, Sales MP, Pinto MSP, Silva LB, Oliveira AEA, Machado OLT, Fernandes KVS, Xavier-Filho J. Lima bean (*Phaseolus lunatus*) seed coat phaseolin is detrimental to the cowpea weevil (*Callosobruchus maculatus*). **Brazilian Journal of Medical and Biological Research**. v. 33, p. 191-198, 2000.
- Moreno J, Chrispeels MJ. A lectin gene encodes the alphaamylase inhibitor of the common bean. **Proceedings of the National Academy of Sciences**. v. 86, p. 7885–7889, 1989.
- Mota AC, DaMatta RA, Lima Filho M, SIlva CP, Xavier-Filho J. Cowpea (*Vigna unguiculata*) vicilins bind to the peritrophic menbrane of larval sugarcane stalk borer (*Diatraea Saccharalis*). **Journal of Insect Physiology**. v. 49, p. 873–880, 2003.
- Moura FT, Oliveira AS, Macedo LLP, Vianna ALBR, Andrade LBS, Martins-Miranda AS, Oliveira JTA, Elizeu A Santos EA, Sales MP. Effects of a chitin-binding vicilin from Enterolobium contortisiliquum seeds on bean bruchid pests (*Callosobruchus maculatus* and *Zabrotes subfasciatus*) and phytopathogenic fungi (*Fusarium solani* and *Colletrichum lindemuntianum*). **Journal of Agricultural and Food Chemistry**. v. 55, p. 260-266, 2007.
- Nagpure A, Choudhary B, Gupta RK. Chitinases: in agriculture and human healthcare. **Critical Reviews in Biotechnology**. v. 34, p. 215-232, 2014.
- Nascimento VV, Castro HC, Abreu PA, Oliveira AEA, Fernandez JH, Araújo JDS, Machado OLT. In Silico Structural Characteristics and r-Amylase Inhibitory Properties of Ric c 1 and Ric c 3, Allergenic 2S Albumins from *Ricinus communis* Seeds. **Journal of Agricultural and Food Chemistry**. v. 59, p. 4814- 4821, 2011.
- Nanjo Y, Skultety L, Uváčková L, Klubicová K, Hajduch M, Komatsu S. Mass Spectrometry-

- Based Analysis of Proteomic Changes in the Root Tips of Flooded Soybean Seedlings. **Journal of Proteome Research**, v. 11, p. 372–385, 2012.
- Nunes NNS, Ferreira RS, Silva-Lucca RA, De Sá LFR, De Oliveira AEA, Correia MTDS, Paiva PMG, Wlodawer A, Oliva ML V. Potential of the Lectin/Inhibitor Isolated from *Crataeva tapia Bark* (CrataBL) for Controlling *Callosobruchus maculatus* Larva Development. **Journal of Agricultural and Food Chemistry**. v. 63, p. 10431–10436, 2015.
- Nunes NNS, Ferreira RS, de Sá LFR, de Oliveira AEA, Oliva MLV. A novel cysteine proteinase inhibitor from seeds of Enterolobium contortisiliquum and its effect on Callosobruchus maculatus larvae. **Biochemistry and Biophysics**. v. 25, p. 100876, 2020.
- Oliveira AEA, Sales MP, Machado OLT, Fernandes KVS. The toxicity of jack bean (*Canavalia ensiformis* (L) DC) cotiledonary and testa proteins to the cowpea weevil *Callosobruchus maculatus*. **Entomologia Experimentalis Et Applicata.** v. 92, p. 249-255, 1999.
- Oliveira GB, Kunz D, Peres T V., Leal RB, Uchôa AF, Samuels RI, Macedo MLR, Carlini CR, Ribeiro AF, Grangeiro TB, *et al.* Variant vicilins from a resistant *Vigna unguiculata* lineage (IT81D-1053) accumulate inside *Callosobruchus maculatus* larval midgut epithelium. **Comparative Biochemistry and Physiolog.** v.168, p. 45–52, 2014.
- Organização das Nações Unidas (ONU) 2019. **Transformando Nosso Mundo: A Agenda 2030 para o Desenvolvimento Sustentável.** Disponível em: https://nacoesunidas.org/pos2015/ > Acesso em: 1 jul. 2020.
- Osborn TC, Blake T, Gepts P, Bliss FA. Genetic variation, inheritance and linkage relationships of a novel seed protein of *Phaseolus vulgaris* L. **Theor Appl Genet.** v. 71, p. 847-855, 1985.
- Oyeleye A, Normi YM. Chitinase: diversity, limitations, and trends in engineering for suitable applications. **Bioscience Reports**. v. 38, BSR2018032300, 2018.
- Padgham J, Pike V, Cardona C. Resistance of a common bean (*Phaseolus vulgaris* L.) cultivar to post-harvest infestation by *Zabrotes subfasciatus* (Bohemann) (Coleoptera: Bruchidae) II. **Laboratory tests. Trop. Pest Management**. v. 38, p. 167-172, 1992.
- Paes EV, Uchôa AF, Pinto MSP, Silva CP, Fernandes KVS, Oliveira AEA, Xavier-Filho J. Binding of *Vigna unguiculata* vicilins to the peritrophic membrane of *Tenebrio molitor* affects larval development. **Entomologia Experimentalis et Applicata**. v. 129, p. 11-17, 2008.
- Peres F; MOREIRA JC. É veneno ou é remédio?: Agrotóxicos, saúde e ambiente. Rio de Janeiro: Editora FIOCRUZ, 2003.
- Peumans WJ, Van Damme EJ. Lectins as plant defense proteins. **Plant Physiol**. v. 109, p. 347–352, 1995.

- Pinto MST, Ribeiro JM, Oliveira EAG. O estudo de genes e proteínas de defesa em plantas. Brazilian. **Journal of Biosciences.** v. 9, p. 241–248, 2011.
- Rossi GB, Valentm-Neto PA, Blank M, Faria JC, Arisi ACM.. Comparison of Grain Proteome Profiles of Four Brazilian Common Bean (*Phaseolus vulgaris* L.) Cultivars. **Journal of Agritulcural and Food Chemistry**, v. 65, p. 7588–7597, 2017.
- Ruppert EE, Fox RS, Barnes RD. **Zoologia dos Invertebrados**. 7ª Ed. São Paulo: Editora Roca, 2005.
- Sales MP, Pimenta PP, Paes NS, Grossi-de-Sá MF, Xavier-Filho J. Vicilins (7S storage globulins) of cowpea (*Vigna unguiculata*) seeds bind to chitinous structures of the midgut of *Callosobruchus maculatus* (Coleoptera: Bruchidae) larvae. **Brazilian Journal of Medical and Biological Research**. v. 34, p. 27-34, 2001.
- Samiksha, Singh D, Kesavan AK, Sohal SK. Purification of a trypsin inhibitor from Psoralea corylifolia seeds and its influence on developmental physiology of Bactrocera cucurbitae. **International Journal of Biological Macromolecules**. v. 139, p. 1141–1150, 2019.
- Santos IS, Oliveira AEA, Da Cunha M, Machado OLT, Neves-Ferreira AGC, Fernandes KVS, Carvalho AO, Perales J, Gomes VM. Expression of chitinase in Adenanthera pavonina seedlings. **Journal of Plant Physiology**. v. 131, p. 80–88, 2007.
- Sharma P, Nath AK, Kumari R, Bhardwaj SV. Purification, characterization and evaluation of insecticidal activity of trypsin inhibitor from Albizia lebbeck seeds. **Journal of Forestry Research**. v. 23, p. 131-137, 2012.
- Silva FB, Oliveira MGA, Batista RB, Pires CV, Xavier LP, Piovesan ND, Oliveira JA, José IC, Moreira MA. Função fisiológica de lipoxigenases de folhas de soja submetidas ao ataque de lagarta (Anticarsia gemmatalis Hübner.). **Arq Inst Biol** (Sao Paulo). v. 69, p. 67–74, 2002.
- Silva LB, Vendas MP, Oliveira AE, Machado OL, Fernandes KV, Xavier-Filho J. The seed coat of *Phaseolus vulgaris* interferes with the development of the cowpea weevil [*Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae)]. **Anais da Academia Brasileira de Ciências**. v. 76, n. 1, p. 57-65, 2004.
- Silva NCM, De Sá LFR, Oliveira EAG, Costa MN, Ferreira ATS, Perales J, Fernandes KVS, Xavier-Filho J, Oliveira AEA. *Albizia lebbeck* seed coat proteins bind to chitin and Act as a defense against cowpea weevil *Callosobruchus maculatus*. **Journal of Agricultural and Food Chemistry**. v. 64, n. 18, p. 3514-3522, 2016.
- Silva NCM, Conceição JG, Ventury KE, De Sá LFR, Oliveira EAG, Santos IS, Gomes VM, Costa MN, Ferreira ATS, Perales J, Xavier-Filho J, Fernandes KVS, Oliveira AEA. Soybean seed coat chitinase as a defense protein against the stored product pest *Callosobruchus maculatus*. **Pest Management Science**. v. 74, n. 6, p. 1449–1456, 2018.

- Silva RB. Caracterização de resistência em sementes de genótipos de feijão comum *Phaseolus vulgaris* (L) a infestação pelo inseto *Callosobruchus maculatus* (F). Monografia (Graduação em Licenciatura em Ciências Biológicas) Universidade Estadual do Norte Fluminense Darcy Ribeiro. Campos dos Goytacazes, p. 77, 2019.
- Sinelnikov IG, Siedhoff NE, Chulkin AM, Zorov IN, Schwaneberg U, Davari MD, Sinitsyna OA, Shcherbakova LA, Sinitsyn AP, Rozhkova AM. Expression and Refolding of the Plant Chitinase From *Drosera capensis* for Applications as a Sustainable and Integrated Pest Management. **Frontiers in Bioengineering and Biotechnology.** v. 9, 2021.
- Singh B, Kaur A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. **LWT Food Science and Technology**. v 87, p. 93-101, 2018.
- Singh G, Bhalla A, Bhatti JS, Chandel S, Rajput A, Abdullah A, Andrabi W, Kaur P. Potential of chitinases as a biopesticide against agriculturally harmful fungi and insects. **Research & Reviews: Journal of Microbiology and Biotechnology**. v. 3, p. 27–32, 2014.
- Siqueira HÁ, Guedes RN, Picanço M. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). **Agricultural and Forest Entomology**. v. 2, p. 147–153, 2000.
- Souza AJ, Santos PO, Pinto MST, Wermelinger TT, Ribeiro ES, Souza SC, Deus MF, Souza MC, Xavier-Filho J, Fernandes KVS, Oliveira AEA. Natural seed coats provide protection against penetration by *Callosobruchus maculatus* (Coleoptera: Bruchidae) larvae. **Crop Protection**. v. 30, p. 651-657, 2011.
- Souza AJ, Ferreira ATS, Perales J, Beghini DG, Fernandes KVS, Xavier-Filho J, Venancio TM, Oliveira AEA. Identification of *Albizia lebbeck* seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid *Callosobruchus maculatus*. **Brazilian Journal of Medical and Biological.** v. 45, p. 118-124, 2012.
- Souza PFN. The forgotten 2S albumin proteins: Importance, structure, and biotechnological application in agriculture and human health. **International Journal of Biological Macromolecules.** v. 164, p. 4638–4649, 2020.
- Toledo TCF, CANNIATTI-BRAZACA SG. Avaliação química e nutricional do feijão carioca (*Phaseolus vulgaris L.*) cozido por diferentes métodos. **Ciencia e Tecnologia de Alimentos**, v. 28, n. 2, p. 355–360, 2008.
- Tyiagi B, Trivedi N, Dubey A. α-Amilase inhibitor: a compelling plant defense mechanism against insect/pests. **Environment & Ecology.** v. 32, n 3, p. 995-999, 2014.
- Uzma-Jalil S, Mishra M, Ansari MI. Current View on Chitinase for Plant Defence. **Trends in Biosciences**. v. 24, p. 6733-6743, 2015.

- Vaz Patto MC, Amarowicz R, Aryee AN, Boye JI, Chung HJ, Martín-Cabrejas MA, Domoney C. Achievements and challenges in improving the nutritional quality of food legumes. **Journal Critical Reviews in Plant Sciences**. v. 34, p. 105–143, 2015.
- Viega de Andrade EK, Rodrigues R, Bard GCV, Pereira LS, Ventury KEB, Cavalcanti TFM, Oliveira AEA, Souza TAM, Gomes VM. Identification, biochemical characterization and biological role of defense proteins from common bean genotypes seeds in response to *Callosobruchus maculatus* infestation. **Journal of Stored Products Research**. v. 87, p. 101580, 2020.
- Ventury KE, Ferreira SR, Rocha MM, Gravina GA, Ferreira ATS, Perales J, Fernandes KVS, Oliveira AEA. Performance of cowpea weevil *Callosobruchus maculatus* (F.) infesting seeds of different *Vigna unguiculata* (L.) Walpers genotypes: The association between bruchid resistance and chitin binding proteins. **Journal of Stored Products Research**. v. 95, p. 101925, 2022.
- WAR AR. et al. Jasmonic Acid-Mediated-Induced Resistance in Groundnut (Arachis hypogaea L.) Against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). **Journal of Plant Growth Regulation**, v. 30, n. 4, p. 512–523, 2011.
- Ye XY, Ng TB. A new antifungal protein and a chitinase with prominent macrophagestimulating activity from seeds of *Phaseolus vulgaris* cv. pinto. **Biochemical and Biophysical Research Communications**. v. 290, p. 813–819, 2002.
- Yunes ANA, Andrade MT, Sales MP, Moraes RA, Fernandes KVS, Gomes VM, Xavier-Filho J. Legume seed vicilins (7S storage proteins) interfere with the development of the cowpea weevil *Callosobruchus maculatus* (F.). **Journal of the Science of Food and Agriculture**. v. 76, p. 111–116, 1998.
- Zhang H, Li Y, Zhu JK. Developing naturally stress-resistant crops for a sustainable agriculture. **Nature Plants**. v. 4, n. 12, p. 989-996, 2018.

ANEXOS

Tabela Suplementar 1 - Proteínas identificadas, por espectrometria de massas, nos cotilédones das sementes dos genótipos L7 e L8 de *Phaseolus vulgaris*. As análises foram realizadas em triplicatas biológicas e os resultados expressam a média dos três experimentos. Para proteínas diferentemente expressas foram considerados p ≤0,05 e diferenças de expressão de pelo menos 1,4 x (Log2 do fold change ≥ a 0.5 UP e Log2 do fold change ≤ -0.5 DOWN). A acumulação diferencial foi determinada comparando L7/L8, proteínas classificadas como UP estão aumentadas no genótipo L7 e proteínas classificadas como DOWN estão diminuídas em L7.

Accession	Description	IEP	mw	max score	reported peptides	sequence coverage	Average		T-test	Log2	Differential acumulation
							L7	L8	L7/L8	L7/L8	L7/L8
V7C0Q5	Lipoxygenase (Fragment)	5,97	50131,22	2797,964	5	15,42	1592,312	139795,9	2,58E-08	-6,45605	DOWN
V7BLH4	Uncharacterized protein	6,95	25663,11	7785,474	7	36,28	-	604181,5	-	-	UNIQUE L8
V7BC16	Lectin_legB domain-containing protein	5,24	30647,3	6735,208	9	50,18	3192,812	-	-	-	UNIQUE L7
V7C787	Lectin_legB domain-containing protein	4,73	29556,01	32039	12	55,88	1535574	23155,29	5,27E-06	6,051293	UP
V7B0I2	Ribosomal_L7Ae domain-containing protein	9,86	12588,66	7406,838	5	63,39	74590,67	207048,3	9,41E-06	-1,4729	DOWN
V7BXR3	3-isopropylmalate dehydrogenase	5,46	43763,09	631,6926	4	17,98	11143,89	19090	1,13E-05	-0,77656	DOWN
V7AEU9	Purple acid phosphatase	9,67	45306,41	11145,77	15	52,41	317079,2	549916,8	1,84E-05	-0,79437	DOWN
V7C8S3	Uncharacterized protein	10,25	14871,46	4656,816	6	50	34170,64	45967,2	1,99E-05	-0,42785	UNCHANGED
T2DP01	14-3-3 protein	4,47	29273,74	5282,056	17	69,88	134809,5	36656,26	3,17E-05	1,878791	UP
V7AZH3	Uncharacterized protein	6,63	22113,55	3312,65	7	51,81	8346,815	10995,51	3,83E-05	-0,39762	UNCHANGED
V7AUF4	V-ATPase 69 kDa subunit	5,13	69024,72	2011,63	20	56,34	34924,56	43449,22	3,9E-05	-0,31509	UNCHANGED
V7BC05	EGF-like domain-containing protein	5,2	71470,9	973,3723	7	16,98	7424,412	12869,51	4,17E-05	-0,79361	DOWN
V7AM98	PPM-type phosphatase domain-containing protein	5,83	27939,59	6862,865	13	63,39	90336,2	35570,88	4,25E-05	1,344608	UP
V7BLG9	Uncharacterized protein	7,22	25589,86	31873,25	16	74,01	8023,222	1017218	4,44E-05	-6,98623	DOWN
V7BH66	Uncharacterized protein	8	14728,24	8540,973	7	34,06	118740,6	26523,67	4,64E-05	2,162461	UP
V7CU10	Phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate-dependent)	5,04	63645,88	2209,143	26	60,82	58647,78	95037,11	5,02E-05	-0,69641	DOWN
T2DNK7	14-3-3 protein	4,65	29363,86	2012,721	8	52,71	11039,48	18915	5,46E-05	-0,77686	DOWN
V7ACY7	WD_REPEATS_REGION domain-containing protein	5,03	122431,8	671,4229	5	6,27	19497,78	28753,11	5,71E-05	-0,56041	UNCHANGED
V7CXU2	Uncharacterized protein (Fragment)	6,11	13145,93	4283,353	6	76,27	12105,89	22833,22	5,9E-05	-0,91543	DOWN

V7ACX0	Purple acid phosphatase	6,56	53268,85	4380,836	5	18,75	14769,79	81056,96	6,52E-05	-2,45629	DOWN
V7B376	TCTP domain-containing protein	4,38	19017,49	8045,521	9	52,1	61865,24	87170,33	7,09E-05	-0,49471	UNCHANGED
V7AF97	Uncharacterized protein	9,5	17963,79	4535,909	10	63,86	42587,63	71833,33	7,98E-05	-0,75422	DOWN
V7C867	Bet_v_1 domain-containing protein	4,64	16528,65	23224,36	12	76,28	180440,9	71882,22	8,43E-05	1,327819	UP
V7BTM5	Uncharacterized protein	5,33	35938,27	1462,577	10	45,54	58556,67	68643,89	8,5E-05	-0,2293	UNCHANGED
V7BFS2	Phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate-dependent)	6,05	68626,75	904,1878	10	22,93	14433,11	23927,11	0,000102	-0,72926	DOWN
T2DLW1	40S ribosomal protein S3-3-like protein	10	26895,29	4799,715	17	74,79	125661,3	36686,05	0,000103	1,776236	UP
V7BGE1	Uncharacterized protein	5,59	71201,78	38676,94	50	72,76	1060277	704993,1	0,000114	0,588761	UNCHANGED
V7AUJ5	Uncharacterized protein	4,46	40541,04	2440,22	2	7,53	10108,42	20566,31	0,000119	-1,02473	DOWN
T2DLX0	40S ribosomal protein S3-3-like protein	10	26401,86	3986,356	16	74,04	8884,323	21272,84	0,00013	-1,25968	DOWN
V7CB58	Aldedh domain-containing protein (Fragment)	5,2	51453,02	3002,39	16	63,21	62667,33	81367,22	0,000131	-0,37673	UNCHANGED
V7CF38	Citrullineaspartate ligase	8,05	52837,55	1145,908	15	37,87	22310,11	40203,89	0,000161	-0,84964	DOWN
V7B7H6	Uncharacterized protein	9	22923,23	20793,98	9	46,33	478653,8	245221,8	0,000184	0,964895	UP
V7BVW3	Aldedh domain-containing protein	9,52	23800,59	6865,512	9	52,13	53641,67	82775,78	0,0002	-0,62585	DOWN
V7BEC0	Uncharacterized protein	6,48	61600,85	1689,037	14	34,09	27010,84	44901,82	0,000226	-0,73324	DOWN
V7BU01	Protein-serine/threonine phosphatase	8	31214,36	1011,815	2	9,19	39074,2	13783,18	0,000227	1,503308	UP
V7BSM8	Annexin	7,13	36252,15	18239,36	22	76,43	183052,2	360811,8	0,00025	-0,97899	DOWN
V7AVK2	AAA domain-containing protein	8,37	44793,58	1100,603	8	28,14	15803,44	21709	0,000275	-0,45805	UNCHANGED
V7AR26	Proteasome subunit alpha type	5,87	27516,2	1146,703	5	37,2	3320,283	5138,614	0,00028	-0,63007	DOWN
V7BP04	Peptidyl-prolyl cis-trans isomerase	9,3	22055,35	1397,432	5	33,82	23424,78	45081,67	0,000295	-0,94451	DOWN
V7AV43	Uncharacterized protein (Fragment)	8,57	23477,55	14243	6	34,86	323579	100168,7	0,00034	1,691687	UP
V7CDG1	Str_synth domain-containing protein	5,08	40788,66	1154,232	9	34,96	40113,11	15852,44	0,000345	1,339369	UP
V7BF09	D-3-phosphoglycerate dehydrogenase	6,37	62693,25	614,8356	6	15,97	12524,78	16624,11	0,00036	-0,40849	UNCHANGED
V7APV2	Uncharacterized protein	5,45	23580,54	2183,495	8	49,76	22318,94	15678,73	0,000387	0,509459	UNCHANGED
V7CZX7	Uncharacterized protein	6,17	35445,1	7883,334	16	47,17	272990	381354,6	0,000388	-0,48228	UNCHANGED
V7B114	Uncharacterized protein	4,9	71216,48	7892,4	28	60,12	293048,9	258097,5	0,0004	0,183225	UNCHANGED
V7AZT1	Pyruvate dehydrogenase E1 component subunit beta	5,6	39343,93	526,8438	2	7,46	17999,33	24188,17	0,000405	-0,42636	UNCHANGED
V7BP18	Clathrin heavy chain	5,12	195355,2	453,5396	11	10,31	166579	17768,58	0,000446	3,228806	UP

V7AL80	Acetohydroxy-acid reductoisomerase	6,62	63402,27	779,725	3	9,53	10868,37	13857,8	0,000455	-0,35056	UNCHANGED
V7CLA3	Tubulin beta chain	4,58	50338,37	1749,647	15	48,53	7650,311	19185,49	0,000481	-1,32643	DOWN
V7CUX0	Uncharacterized protein	5,13	77699,32	4666,56	27	47,07	140814,7	186805,3	0,00049	-0,40774	UNCHANGED
V7B0P3	Transaldolase	5,84	48741,93	911,0356	4	29,12	22688,44	13988,89	0,000491	0,697676	UP
E9NZT0	Ribosomal protein L19	11,86	24528,03	2979,55	6	30,62	40228,19	33002,41	0,0005	0,285636	UNCHANGED
V7CR67	60S ribosomal protein L6	10,6	26130,62	1877,445	7	39,91	36800,39	22528,89	0,000525	0,707945	UP
V7C5Y6	Lectin_legB domain-containing protein	4,54	29974,43	10935,49	6	38,99	18042,17	6714,593	0,000536	1,426001	UP
V7BHZ3	Uncharacterized protein	5,31	27168,98	1374,898	7	36,29	23244,22	33628,89	0,000566	-0,53283	UNCHANGED
T2DNM6	Proteasome subunit beta	5	25079,29	2683,257	7	49,79	208066,6	113491,4	0,000578	0,874462	UP
V7AV84	Uncharacterized protein	9,4	61038,03	637,2419	4	10,77	14813,78	7489,833	0,00058	0,983934	UP
V7CM38	Peptidase_M3 domain-containing protein	5,76	88565,87	2447,431	32	61,89	78547,44	106094,3	0,000589	-0,43371	UNCHANGED
V7CDE0	Malate dehydrogenase	8,48	43809,04	2276,004	14	50,12	32893,11	56175,56	0,00059	-0,77216	DOWN
V7BFR1	Alpha-L-fucosidase	6,58	56385,09	816,9902	5	19,23	17229,56	8213,667	0,000621	1,068787	UP
V7BWR2	Dirigent protein	6,66	21129,11	1699,495	3	21,47	20894,78	31677,78	0,000633	-0,60033	DOWN
V7CZL3	Phosphopyruvate hydratase	5,24	47946,45	5821,428	18	66,44	54061,44	89902	0,000692	-0,73375	DOWN
V7BQX5	Tubulin beta chain	4,55	50933,07	2140,131	18	60,85	26513,37	39631,79	0,000717	-0,57994	UNCHANGED
V7B0E4	Uncharacterized protein	5,23	41920,04	2437,917	11	55,23	69356,78	27870,67	0,000722	1,315289	UP
T2DNB9	Pyridoxal biosynthesis protein PDX1-like protein	5,7	33690,65	901,5806	5	22,44	22628,11	13796,89	0,000792	0,713773	UP
V7BWK1	Uncharacterized protein	5,82	27317,11	21082,6	17	91,7	212649,6	279538,6	0,000872	-0,39457	UNCHANGED
T2DNF1	60S ribosomal protein L13a	10,62	23976,53	1880,519	9	44,17	57687,67	44169,56	0,000895	0,385211	UNCHANGED
V7ARK4	Uncharacterized protein	5,71	36817,09	612,8856	4	21,6	10113,11	13568,89	0,000938	-0,42408	UNCHANGED
V7AQS4	Catalase	6,85	56905,03	460,6433	5	13,41	34882,89	21611,56	0,000939	0,690717	UP
V7AKA4	Glyco_hydro_18 domain-containing protein	5,81	36893,62	9955,188	11	39,14	349606	276495,8	0,000962	0,338473	UNCHANGED
V7BAI3	Uncharacterized protein	4,92	58716,84	592,6031	7	21,5	18444,78	23788,89	0,000966	-0,36708	UNCHANGED
V7AXG5	S4 RNA-binding domain-containing protein	10,75	23105,64	1946,235	6	25,38	54300,12	82161,12	0,000969	-0,5975	UNCHANGED
V7AMF3	Ferritin	5,46	29309,08	921,2958	5	24,62	17030,56	13969,7	0,000983	0,285824	UNCHANGED
V7C497	Uncharacterized protein	5,11	28395,41	2590,756	4	15,51	12624,78	25818,08	0,001011	-1,03212	DOWN
V7BEL4	Abhydrolase_3 domain-containing protein	8,22	37892,55	675,1255	2	8,88	24103,83	32099,5	0,001053	-0,41329	UNCHANGED

V7C8K4	S5 DRBM domain-containing protein	10,8	30031,81	4488,572	13	56,83	234367,8	169032,2	0,001075	0,471476	UNCHANGED
V7B198	Uncharacterized protein	9,04	35058,93	1081,709	6	32,39	23992,89	37359	0,001132	-0,63885	DOWN
V7AVP7	14_3_3 domain-containing protein	4,74	28311,97	3685,438	9	44,35	16491,12	21805,28	0,001159	-0,40299	UNCHANGED
V7BFI2	TYR_PHOSPHATASE_2 domain-containing protein	5,46	39419,15	3515,237	14	54,78	58374,78	68507	0,00123	-0,23091	UNCHANGED
Q41111	Dehydrin	5,16	22973,5	1757,341	5	32,18	34497,44	19415,67	0,001264	0,829268	UP
V7C7H0	Ribosomal_L6e_N domain-containing protein	10,65	25846,25	2103,148	10	50,43	58168,94	34191,66	0,001267	0,766604	UP
T2DMS9	SKP1-like protein	4,32	17651,78	2546,831	5	49,03	21986,78	30642,67	0,00127	-0,47891	UNCHANGED
V7B850	14_3_3 domain-containing protein	4,48	29413,84	5238,642	16	70,5	13399	24318,5	0,001296	-0,85993	DOWN
V7BLY4	AB hydrolase-1 domain-containing protein	5,65	36393,69	4526,828	9	38,68	15670,67	8884,184	0,001297	0,818755	UP
V7AE97	Uncharacterized protein	4,89	23394,18	6031,886	13	85,44	50864,88	53094,82	0,001324	-0,0619	UNCHANGED
V7AU90	Glucose-1-phosphate adenylyltransferase	6,34	58317,89	932,7545	8	20,76	19460,33	23453,78	0,001409	-0,26928	UNCHANGED
V7AWT7	Uncharacterized protein	5,47	90218,73	2226,582	18	37,19	120708,9	173585,6	0,001415	-0,52411	UNCHANGED
V7CQR2	Aspartate-semialdehyde dehydrogenase	6,12	41052,89	426,1006	3	12,8	17681,61	29081,11	0,001441	-0,71783	DOWN
V7C1I1	Uncharacterized protein	6,75	45081,73	5778,527	15	59,71	132500,8	146422,2	0,001512	-0,14413	UNCHANGED
T2DPJ8	40S ribosomal protein S6	11,15	28387,07	6411,626	6	34,82	12796,85	22497,29	0,001515	-0,81396	DOWN
V7BB35	Vacuolar proton pump subunit B	4,81	54393,87	888,5346	10	48,47	38494,56	48102	0,001534	-0,32144	UNCHANGED
V7C7X2	N-acyl-L-amino-acid amidohydrolase	5,7	50623,43	455,6319	3	9,07	11759,17	24786,11	0,001536	-1,07575	DOWN
V7CRL9	Uncharacterized protein	9,27	8634,003	8234,852	2	31,51	58373,33	19046,5	0,001577	1,615784	UP
V7CA94	Uncharacterized protein	7,85	29631,38	1580,276	6	35,14	28920,11	7362,697	0,001581	1,973767	UP
V7BKJ4	Uncharacterized protein	6,09	29840,19	676,3065	2	9,03	19352,17	33348,67	0,001587	-0,78513	DOWN
V7D0Y0	TRASH domain-containing protein	11,17	18455,74	1244,349	3	19,63	50306,56	35911,44	0,001593	0,486303	UNCHANGED
V7CR63	EF1_GNE domain-containing protein	4,21	25042,17	2801,004	8	54,11	36122,97	23514,13	0,001667	0,619389	UP
V7CBZ3	Glutamate dehydrogenase	6,01	45439,89	644,7121	3	15,05	7567	9666,556	0,001718	-0,35328	UNCHANGED
V7CD29	Uncharacterized protein	4,74	37567,57	812,0388	7	30,24	30364,33	36944,11	0,001719	-0,28297	UNCHANGED
V7BP67	Peptidase A1 domain-containing protein	7,78	46986,46	1404,037	6	23,79	61867,99	35169,86	0,001827	0,814854	UP
V7BWH9	Peptidase A1 domain-containing protein	8,99	47488,22	764,7455	4	10,32	10991,22	18035,11	0,001888	-0,71446	DOWN
V7AFM3	Uncharacterized protein	4,92	71514,86	6910,92	27	62,1	36181,42	22389,3	0,001916	0,692439	UP
V7B8Z2	Ribosomal_L16 domain-containing protein	10,92	25374,39	4864,152	10	44,34	29292,62	18469,4	0,001937	0,665401	UP
		,				,					

V7BQW2	Amidohydro-rel domain-containing protein	6,44	58689,28	3040,877	20	49,25	154728,6	246521	0,001987	-0,67197	DOWN
V7CVE6	Uncharacterized protein	9,1	10149,68	6179,673	3	28,41	96323	48529,11	0,002011	0,98903	UP
V7BTD0	Phosphoglycerate kinase	6,18	42249,85	5382,853	18	77,56	74574,22	105241,2	0,002049	-0,49695	UNCHANGED
V7BBR4	Uncharacterized protein	4,86	26222,1	58088,04	16	91,05	478736,8	591468,7	0,002074	-0,30507	UNCHANGED
V7AMW9	Bet_v_1 domain-containing protein	5,4	18275,5	20426,05	12	78,75	116142,4	157386	0,002091	-0,43841	UNCHANGED
V7CPA5	Glutathione peroxidase	8,8	25841,31	5591,085	8	46,52	77931,22	98467,78	0,002287	-0,33745	UNCHANGED
V7BJW0	Uncharacterized protein	10,75	15836,56	3555,893	4	24,29	18855,93	12546,11	0,00233	0,587778	UNCHANGED
V7CD96	40S ribosomal protein S4	10,65	30027,03	3389,116	13	56,82	64828,89	92196,78	0,002407	-0,50808	UNCHANGED
V7B2G6	Phosphoglycerate mutase (2,3-diphosphoglycerate-independent)	5,43	60956,24	427,815	4	10,93	28768,33	36623,33	0,002453	-0,34828	UNCHANGED
V7D1L4	Methenyltetrahydrofolate cyclohydrolase	7,38	31739,66	2258,175	9	45,24	41323,33	38494,33	0,00263	0,102311	UNCHANGED
V7BV45	Uncharacterized protein	10,13	39685,72	1411,43	8	28,07	25487,06	19042,78	0,002661	0,420521	UNCHANGED
V7CXB2	NAC-A/B domain-containing protein	4,16	21841,09	1513,251	4	27,64	9429,663	15456,83	0,002721	-0,71297	DOWN
V7BLY3	Uncharacterized protein	10,6	16037,48	3043,323	5	33,57	60106,44	73138,44	0,002733	-0,28311	UNCHANGED
V7C335	Elongation factor 1-alpha	9,39	49673,3	15895,33	22	66,67	438844,6	529207,3	0,00282	-0,27012	UNCHANGED
V7C487	40S ribosomal protein S27	8,89	9956,352	5963,467	3	44,19	53331	60931,89	0,002836	-0,19222	UNCHANGED
V7BCX8	Uncharacterized protein	9,16	27531,99	1381,896	6	26,94	35105	21479,89	0,002845	0,70869	UP
V7B788	Clathrin heavy chain	5,07	194404,9	713,8705	27	26,54	109872,6	146391,9	0,002897	-0,414	UNCHANGED
V7B6Z4	Fructose-bisphosphate aldolase	6,82	38828,94	8722,731	19	77,65	110936,2	148975	0,003007	-0,42534	UNCHANGED
V7CMH4	40S ribosomal protein S6	11,15	28585,29	7919,157	5	34,54	130561,2	110457,1	0,003098	0,241239	UNCHANGED
V7BIN2	Usp domain-containing protein	6,08	20044,07	16920,3	9	63,19	183996,4	156611,7	0,003124	0,232486	UNCHANGED
V7CFR2	Uncharacterized protein	10,7	10469,16	2018,016	3	34,78	39159,89	31830,78	0,003232	0,298954	UNCHANGED
V7BU45	Uncharacterized protein	5,73	48218,47	1784,759	14	45,58	38244,67	54233,23	0,003555	-0,50392	UNCHANGED
V7C5Y1	Aldose 1-epimerase	5,57	37267,76	1008,503	4	22,71	23915,78	17063,11	0,003679	0,487082	UNCHANGED
V7ACP9	DUF4149 domain-containing protein	9,52	46386,72	3870,143	9	39,56	110899,3	70264,11	0,003767	0,658391	UP
V7B7E3	Amidohydro-rel domain-containing protein	6,38	62076,18	859,3459	5	6,27	9467,607	21694,8	0,004079	-1,19628	DOWN
V7D221	Prolyl-tRNA synthetase	5,99	58533,68	629,4023	4	14,31	13388,61	16473,67	0,004142	-0,29916	UNCHANGED
T2DQ31	40S ribosomal protein S17-4	10,4	15815,37	3717,595	5	23,7	32060,06	40840,89	0,00417	-0,34924	UNCHANGED
V7BBZ7	Cytochrome b5 heme-binding domain- containing protein	4,28	23175,11	3512,252	7	54,5	53831	70956,75	0,004194	-0,3985	UNCHANGED

Q43634	Intracellular pathogenesis related protein	4,75	16389,58	13751,51	7	69,68	43453,17	18912,56	0,004314	1,200117	UP
V7BIS6	Cyanate hydratase	5,51	18778,34	1547,929	3	36,36	10690,56	14216,22	0,004348	-0,4112	UNCHANGED
V7BMF8	Glutathione transferase	5,68	25076,69	3638,652	7	51,63	21223,65	44456,25	0,004402	-1,06671	DOWN
V7BVD2	Aconitate hydratase	7,55	107666,5	3619,424	22	41,91	21434,93	35381,08	0,004534	-0,72301	DOWN
V7CN37	Ribosomal_S17_N domain-containing protein	11,09	18077,09	3852,332	10	57,86	29463,32	41325,31	0,004565	-0,48811	UNCHANGED
V7AWB2	Gp_dh_N domain-containing protein (Fragment)	9,06	20239,17	41465,19	8	50,56	168750,3	208844,8	0,004816	-0,30754	UNCHANGED
V7BCY8	ATP synthase subunit d, mitochondrial	4,83	19857,42	1118,272	2	15,48	13894,67	18375	0,004839	-0,40321	UNCHANGED
V7BGH4	Calreticulin	4,31	48442,23	5222,726	20	70	134110,8	217986,3	0,004894	-0,70081	DOWN
V7CFC6	Reticulon-like protein	9,78	24702,13	1878,873	2	13,68	47758,17	32201,67	0,004927	0,568612	UNCHANGED
V7CWQ4	S-(hydroxymethyl)glutathione dehydrogenase	6,07	41229,79	5249,805	15	68,34	107915,1	127721,4	0,005207	-0,2431	UNCHANGED
U5U060	Oligomycin sensitivity conferring protein	9,92	26891,26	782,5512	3	20,41	14686,56	18654,56	0,00522	-0,34503	UNCHANGED
V7BS83	60S ribosomal protein L18a	10,88	21483,39	5292,399	8	55,62	96588,22	85527,44	0,005296	0,17546	UNCHANGED
V7CXD6	Glutaredoxin-dependent peroxiredoxin	7,99	23057,35	608,3074	2	16,2	21575	40683,67	0,005389	-0,91509	DOWN
V7BA18	HATPase_c domain-containing protein	4,77	80463,41	5421,9	26	60,09	107352,2	128746,3	0,005552	-0,26218	UNCHANGED
V7CQZ8	SHSP domain-containing protein	5,62	18353,74	3897,712	6	46,88	10575,94	13302,82	0,005672	-0,33095	UNCHANGED
V7B5W7	Uncharacterized protein	7,81	12183,41	1860,903	2	39,29	12656,33	29710,17	0,006217	-1,2311	DOWN
V7CVX7	Uncharacterized protein	9,67	15954,39	4787,922	3	33,55	36223,73	85402,32	0,006323	-1,23734	DOWN
V7BUB6	Uncharacterized protein	5,57	26118,52	11095,7	16	51,04	122963,7	151363,1	0,006549	-0,29978	UNCHANGED
V7BFL3	Uncharacterized protein	5,6	57559,17	40639,33	38	84,66	826332,8	1065920	0,006599	-0,3673	UNCHANGED
V7B803	UTPglucose-1-phosphate uridylyltransferase	4,87	51849,22	10727,91	29	76,97	204372,1	255201,6	0,006766	-0,32044	UNCHANGED
V7BBU1	Hcy-binding domain-containing protein (Fragment)	4,91	31387,02	929,7641	2	14,18	13109,67	16441,5	0,0069	-0,32671	UNCHANGED
V7CMV3	Uncharacterized protein	6,27	26613,87	749,5088	2	10,09	27633,83	22228,67	0,006919	0,314014	UNCHANGED
V7BAZ0	ATP synthase subunit beta	5,7	59848,15	11213,16	21	74,91	144850	204146,7	0,006943	-0,49505	UNCHANGED
V7AT21	SHSP domain-containing protein	8,9	29300,88	931,8753	3	19,07	14455	11126,56	0,006984	0,377562	UNCHANGED
V7AR71	40S ribosomal protein S12	5,4	15309,52	5993,534	3	33,57	68506,11	88428,89	0,007117	-0,36829	UNCHANGED
T2DLN4	60S ribosomal protein I9	9,72	21949,34	7174,109	13	64,25	49008,84	62502,44	0,007132	-0,35087	UNCHANGED
V7BUJ1	LRRNT_2 domain-containing protein	8,94	53722,48	2513,088	15	45,34	39426	16539,22	0,007278	1,253256	UP
V7C4W6	Uncharacterized protein	4,81	23705,18	2453,913	6	44,44	31546,22	51278,89	0,007297	-0,7009	DOWN

V7B117	Uncharacterized protein	9,13	29726,74	3995,38	13	62,32	81294,56	49518,22	0,007542	0,715199	UP
V7C268	Tripeptidyl-peptidase II	5,52	147026,5	1998,759	55	58,69	92319,89	106389,2	0,007544	-0,20464	UNCHANGED
V7AHZ1	Senescence domain-containing protein	6,59	46089,31	514,6983	2	9,37	11121	13550,17	0,007693	-0,28502	UNCHANGED
V7BP57	Peptidase A1 domain-containing protein	8,51	47238,88	1208,203	8	34,41	14163,18	11458,24	0,007728	0,30576	UNCHANGED
V7AK23	Malate dehydrogenase	8,8	36251,73	10338,7	14	74,2	139022	156816,4	0,007732	-0,17376	UNCHANGED
V7BBQ8	Dihydrolipoyllysine-residue succinyltransferase	9,57	50510,97	1119,682	5	12,47	35413,44	42168,33	0,007769	-0,25186	UNCHANGED
V7D014	1,4-alpha-glucan branching enzyme	5,14	99079,42	596,1606	6	13,1	21028,22	15895,89	0,008136	0,403673	UNCHANGED
V7CBD0	Ribosomal_L18e/L15P domain-containing protein	11,04	16360,33	2686,164	6	49,32	68560,95	54860,22	0,008299	0,321626	UNCHANGED
V7AJR2	Uncharacterized protein	10,08	41896,14	1331,14	5	14,81	50751,33	73717,41	0,008815	-0,53856	UNCHANGED
V7CMT5	Uncharacterized protein (Fragment)	11,85	10621,6	5820,473	4	43,01	42018,11	28616,22	0,008914	0,554178	UNCHANGED
V7BFL0	Uncharacterized protein	5	27190,41	9324,303	15	83,46	90254,89	112292,3	0,008972	-0,31518	UNCHANGED
V7BFT4	Uncharacterized protein	8,81	39130,68	37675,16	22	73,45	501408,9	636127,7	0,009021	-0,34333	UNCHANGED
V7C056	Uncharacterized protein	7,52	20175,42	2293,221	2	15,03	20257,5	12579,67	0,009098	0,687362	UP
V7CZE1	Adenosine kinase	5,93	37870,26	1568,159	12	56,89	17523	25422,33	0,009294	-0,53685	UNCHANGED
V7BDD6	Pyruvate kinase	6,3	58224,04	2225,412	12	36,31	25631,89	37339,27	0,009565	-0,54275	UNCHANGED
V7CIN9	UDP-glucose 4-epimerase	7,02	43765,79	800,2661	5	16,2	11808,78	16020,11	0,009716	-0,44002	UNCHANGED
V7ANK0	Uncharacterized protein	6	22190,44	1334,705	2	21,94	60601,5	30183	0,009773	1,005617	UP
V7CSN5	Uncharacterized protein	4,66	62703,27	5963,041	22	56,49	65955	90993,28	0,009793	-0,46428	UNCHANGED
V7B080	Uncharacterized protein	5,08	42000,98	6506,766	18	59,95	32176,96	44937,67	0,009961	-0,4819	UNCHANGED
V7BPF8	Uncharacterized protein	8,17	18460,97	1228,799	3	27,81	7185,556	10075,78	0,009986	-0,48772	UNCHANGED
V7AWC5	4-alpha-glucanotransferase	5,97	63609,99	3029,141	16	41,1	64607	89716,56	0,010365	-0,47368	UNCHANGED
V7BT57	Aldedh domain-containing protein	5,04	37059,28	4851,262	16	63,11	105416,9	128984,9	0,010797	-0,2911	UNCHANGED
V7B2L4	14_3_3 domain-containing protein	4,49	29093,71	8338,596	15	73,44	92304,52	115447,4	0,010877	-0,32276	UNCHANGED
V7AHC4	Protein disulfide-isomerase	4,52	65124,95	597,2828	6	10,92	31767,89	40711,44	0,011307	-0,35787	UNCHANGED
V7AV18	Protein disulfide-isomerase	4,89	57742,88	21125,6	35	83,98	362108	456880,9	0,011413	-0,3354	UNCHANGED
V7AQB1	Lipoxygenase	6,24	97958,55	2336,58	6	7,38	2357,638	5324,152	0,01146	-1,17521	DOWN
T2DNI1	Hydroxyacylglutathione hydrolase	5,6	28929,44	545,8112	3	12,79	15319,44	26673	0,011603	-0,80002	DOWN
V7AGU9	NAD(P)-bd_dom domain-containing protein	6,82	39197,88	1984,092	9	38,15	16071,22	25948,74	0,012131	-0,69119	DOWN

V7BTD9	Uncharacterized protein	5,47	63285,24	1064,107	9	25,97	20926,22	30073	0,012144	-0,52316	UNCHANGED
V7CRP8	Polyadenylate-binding protein	7,91	71711,44	360,2807	2	3,99	12851,06	18707,27	0,012334	-0,54171	UNCHANGED
V7CYN3	NAC-A/B domain-containing protein	4,22	21796,1	1500,972	6	52,24	22365,61	32596	0,012516	-0,54341	UNCHANGED
V7BS67	Uncharacterized protein	11,44	16379,8	8306,645	10	67,33	75198,67	85323,67	0,012524	-0,18224	UNCHANGED
V7C2G9	5-methyltetrahydropteroyltriglutamate homocysteine S-methyltransferase	5,85	84581,65	7344,903	19	39,06	5035,308	7500,102	0,012573	-0,57483	UNCHANGED
V7BTT2	Uncharacterized protein	5,16	41823,85	8652,514	16	56,23	84362,27	119743,3	0,012765	-0,50528	UNCHANGED
V7BAC3	SHSP domain-containing protein	5,96	17782,08	30075,97	13	82,8	468934,8	515376,4	0,012889	-0,13624	UNCHANGED
V7BJH6	Seryl-tRNA synthetase	5,93	51878,53	1532,951	9	45,41	58214,89	52962,33	0,013183	0,136421	UNCHANGED
V7AXU4	Protein disulfide-isomerase	5,39	56710,15	2510,694	15	39,88	44231,33	125122	0,013342	-1,50019	DOWN
V7C7X4	Uncharacterized protein	6,59	50372,75	14758,6	23	70,57	188359,9	252738,8	0,013366	-0,42416	UNCHANGED
V7CRE9	Ribonuclease	6,16	108818,1	837,6277	17	25,15	43664,33	61657,78	0,013392	-0,49783	UNCHANGED
V7CS94	Biotin carboxylase	8,21	58584,23	839,491	7	22,5	15011,67	22357,56	0,013833	-0,57468	UNCHANGED
V7AJY8	Uncharacterized protein	10,46	53603,37	3667,652	11	23,33	7085,204	4953,368	0,013949	0,5164	UNCHANGED
V7B7M0	SHSP domain-containing protein	7,77	17767,2	16558,34	11	67,95	171804,4	136617	0,014131	0,33063	UNCHANGED
V7C9Z9	Carbonic anhydrase	5,34	28560,25	7504,738	17	80,86	111853,4	99132,11	0,014185	0,174185	UNCHANGED
V7BSG9	Uncharacterized protein	5,63	27944,93	14306,27	13	68,16	389069,8	463865,3	0,014351	-0,25368	UNCHANGED
V7CDG3	Aldedh domain-containing protein	6,37	61816,8	957,0825	11	31,65	25622,56	29740,67	0,014418	-0,21502	UNCHANGED
V7AQB6	Uncharacterized protein	5,21	47002,59	3837,852	22	59,56	28604,78	34017,33	0,014527	-0,25001	UNCHANGED
V7BL53	Ribosomal_S17_N domain-containing protein	11,09	18081,11	4280,655	9	57,86	77154,15	62775,81	0,014916	0,297535	UNCHANGED
V7B8S3	Uncharacterized protein	9,67	22820,34	3052,899	6	48,78	19414,67	34704	0,015644	-0,83796	DOWN
V7B9I8	EF1_GNE domain-containing protein	4,38	24244,34	3644,829	10	58,82	52901,74	102502,7	0,016437	-0,95427	DOWN
V7BB47	Protein disulfide-isomerase	5,48	47947,76	1984,38	11	44,95	48996,56	70303,22	0,016575	-0,52091	UNCHANGED
V7AGN7	26S proteasome non-ATPase regulatory subunit 2 homolog	4,91	97935,8	579,8067	10	15,82	21001,78	25807,22	0,016592	-0,29726	UNCHANGED
V7BZR0	Uncharacterized protein (Fragment)	5,03	38725,02	518,48	3	14,94	20101,17	11134,06	0,016603	0,8523	UP
V7CMM8	Alpha-1,4 glucan phosphorylase	5,27	112037,4	5112,565	17	31,05	9324,265	11952,43	0,016627	-0,35824	UNCHANGED
V7CEC3	Uncharacterized protein	5,35	22786,66	1350,488	4	25,74	16992,67	30410,22	0,016652	-0,83964	DOWN
V7BUX9	Uncharacterized protein	10	41873,2	1520,702	6	17,4	15941,86	17662,42	0,017671	-0,14786	UNCHANGED
V7CQ93	Profilin	4,7	14295,32	2512,694	3	63,36	14376,22	15638,82	0,018315	-0,12145	UNCHANGED

V7BRF6	Uncharacterized protein	5,39	65279,33	709,9324	8	24,33	14926,92	20095,26	0,018386	-0,42894	UNCHANGED
V7D0W9	Ribosomal protein L19	11,86	24624,16	1848,99	5	27,96	24781,7	23037,04	0,019272	0,10532	UNCHANGED
V7CNB9	Alpha-galactosidase	7,58	72093,36	449,4706	3	7,85	18092,56	13817,67	0,019413	0,388882	UNCHANGED
V7CZL4	Ferritin	5,31	29623,45	3322,659	7	47,35	325125	356773,9	0,019581	-0,13402	UNCHANGED
V7C6Y0	Pyrophosphatefructose 6-phosphate 1- phosphotransferase subunit alpha	6,38	68253,89	365,8901	4	10,05	11451,11	16279,78	0,019869	-0,50759	UNCHANGED
V7B9Z2	Uncharacterized protein	5,86	23436,12	2252,463	10	77	48485,89	100235,7	0,019871	-1,04776	DOWN
V7AFC8	Uncharacterized protein	4,92	61637,4	695,7545	9	25,86	23303,44	35856,44	0,020267	-0,62169	DOWN
V7CIK0	Uncharacterized protein	10,25	14835,4	4656,816	6	50	45342,21	40199,8	0,020344	0,173666	UNCHANGED
V7D1C6	Uncharacterized protein	5,81	24212,25	351,6436	2	9,77	12480,33	10074,83	0,021252	0,3089	UNCHANGED
V7BHC4	Peptidase A1 domain-containing protein	8,73	46664,11	2021,356	9	33,56	54687,56	43204,89	0,022247	0,340018	UNCHANGED
V7BFL4	Cupin type-1 domain-containing protein	4,9	41704,12	56512,68	25	79,51	1054873	863147,6	0,022986	0,28939	UNCHANGED
V7BBA0	Ferritin	5,85	27874,76	5554,65	11	57,09	75817,11	63080,56	0,023452	0,265328	UNCHANGED
V7CTB5	PKS_ER domain-containing protein	6,08	41778,55	3837,916	11	35,26	58076,03	92437,94	0,023548	-0,67054	DOWN
V7C1T5	Pyruvate kinase	6,12	55939,74	1690,248	17	52,75	50613,89	66736,89	0,023907	-0,39895	UNCHANGED
V7BT83	Phosphoglycerate kinase	9,05	49844,66	1091,516	8	27,25	87821,44	100300,9	0,02432	-0,19169	UNCHANGED
D3W146	Non-specific lipid-transfer protein	8,86	12349,07	17477,03	5	40,87	276594,2	335440,6	0,024387	-0,27829	UNCHANGED
V7ATU7	Thioredoxin domain-containing protein	5,76	13402,5	2080,702	3	33,61	34695,67	38484,33	0,024748	-0,14952	UNCHANGED
V7BPP1	AB hydrolase-1 domain-containing protein	5,52	36337,52	14667,93	13	63,52	189420,7	215059,1	0,024933	-0,18314	UNCHANGED
V7BNL7	Uncharacterized protein	7,21	23359,43	668,606	5	31,28	15671,89	13706,67	0,025418	0,193301	UNCHANGED
V7ASE5	Glucose-6-phosphate isomerase	6,18	62887,73	1075,745	9	25,7	21549,44	29668,67	0,025562	-0,46129	UNCHANGED
V7C9Y9	UDP-glucose 4-epimerase	8	39385,94	5698,251	5	18,52	108678,4	116345,8	0,025643	-0,09835	UNCHANGED
V7CN34	Guanosine nucleotide diphosphate dissociation inhibitor	5,28	50123,09	3188,681	18	59,1	100222,7	110026,2	0,026598	-0,13464	UNCHANGED
V7C2N5	Glyceraldehyde-3-phosphate dehydrogenase	7,82	36665,95	25687,07	12	51,04	40929,99	14074,36	0,026976	1,540089	UP
V7CZL8	Uncharacterized protein	4,84	27289	10184	14	62,45	165525,3	153752,9	0,027006	0,106439	UNCHANGED
V7B096	Uncharacterized protein	5,88	18929,27	2052,015	3	20	64364,78	46778,61	0,027479	0,460422	UNCHANGED
T2DN03	Proteasome subunit beta	7,47	26280,05	1962,305	6	34,91	25280,78	30020,33	0,027821	-0,2479	UNCHANGED
V7B0A5	Uncharacterized protein	4,94	71543,01	6549,923	25	62,25	11660,67	15455,2	0,027998	-0,40644	UNCHANGED
V7CT13	Tubulin beta chain	4,59	50666,93	921,8216	7	19,28	12590,65	14861,41	0,028133	-0,23922	UNCHANGED

V7AQB5	AAA domain-containing protein	8,92	47233,88	772,6352	5	17,27	14144,56	19367,11	0,02912	-0,45336	UNCHANGED
V7CPQ1	AAA domain-containing protein	6,26	95544,98	1302,954	15	27,32	52993,33	40805,67	0,029712	0,377041	UNCHANGED
V7BL29	Uncharacterized protein	11,58	7511,744	6959,19	2	29,23	114125,5	129757,3	0,030203	-0,18519	UNCHANGED
V7BD83	Coatomer subunit delta	5,74	58417,3	789,038	3	9,43	13919,89	17287,78	0,030818	-0,3126	UNCHANGED
V7CGW9	Uncharacterized protein	6,52	20764,84	5193,212	10	80,11	55975,56	88825,7	0,033119	-0,66618	DOWN
V7BAS7	Formyltetrahydrofolate synthetase	6,42	68066,97	3398,624	21	51,26	68141,44	78900,11	0,033202	-0,21149	UNCHANGED
V7C8J3	Uncharacterized protein	6,64	39202,66	28125,24	30	68,91	227073,6	315862,2	0,033228	-0,47614	UNCHANGED
V7BUR4	Ketol-acid reductoisomerase	6,66	63387,16	1303,913	9	20,62	25093,44	30029,22	0,034051	-0,25906	UNCHANGED
V7BF08	Uncharacterized protein	4,84	67750,65	6778,634	23	57,33	6290,578	11781,28	0,034053	-0,90523	DOWN
V7BN44	Peptidase_S9 domain-containing protein	5,82	82424,58	442,4502	3	7,47	10693,17	14661,17	0,034109	-0,45531	UNCHANGED
V7BVM2	Ribosomal protein	10,22	24667,13	1838,853	5	34,26	37255,88	44577,57	0,034227	-0,25885	UNCHANGED
V7CTE5	Proteasome subunit beta	5,13	23199,53	1804,592	4	44,12	43294,67	49263,56	0,034565	-0,18633	UNCHANGED
V7AVT2	Uncharacterized protein	6,09	26678,36	809,7888	3	13,91	18273,06	26600,17	0,034793	-0,54172	UNCHANGED
V7AG63	RRM domain-containing protein	8,53	17048,05	1251,561	4	26,44	16880,24	34834,5	0,034815	-1,04518	DOWN
V7BWV9	PfkB domain-containing protein	4,86	35464,57	7303,722	17	69,7	87745,97	97528,83	0,035249	-0,1525	UNCHANGED
V7CH59	M20_dimer domain-containing protein	4,87	48115,7	925,3077	7	25,06	27462,11	36103,33	0,035556	-0,39469	UNCHANGED
V7AUP3	Uncharacterized protein	10,14	18839,82	2527,471	2	39,55	55388,33	26542,33	0,035737	1,061287	UP
V7CW25	Uncharacterized protein	9,25	12777,21	27918,25	5	62,81	139411,4	213888,3	0,035935	-0,61751	DOWN
V7BLB7	Histone H4	11,88	11409,4	13327,63	8	62,14	329519,8	223049,2	0,036023	0,563003	UNCHANGED
V7BGD9	Uncharacterized protein	9,95	14100,27	1402,886	2	16,26	5946,921	11822,74	0,036792	-0,99135	DOWN
V7BIH4	Ribosomal_S7 domain-containing protein	9,96	23095,56	4328,26	4	27,05	105622,1	119894,4	0,037953	-0,18285	UNCHANGED
V7AHS3	Proteasome subunit alpha type	5,48	27432,13	1482,996	5	23,17	48036,44	43031,44	0,038219	0,158738	UNCHANGED
V7BBU7	40S ribosomal protein S3a	10,25	29957,62	3088,499	10	49,81	40696,03	43501,98	0,038565	-0,09619	UNCHANGED
V7BTF5	Uncharacterized protein	5,84	72753,4	792,3869	8	15,85	27967,78	29389,11	0,039642	-0,07152	UNCHANGED
V7C8F3	Aldedh domain-containing protein	6,88	58802,05	782,975	8	23,36	37393,63	46102,66	0,039725	-0,30206	UNCHANGED
V7C3G4	Glutamine synthetase	5,26	39376,23	4175,047	9	47,19	61986,78	52839	0,041082	0,230357	UNCHANGED
V7BIL6	Uncharacterized protein	4,95	90605,34	4331,381	32	63,01	114455,2	98197,72	0,04122	0,221021	UNCHANGED
V7CCI9	Uncharacterized protein	6,12	8762,513	16358,87	2	40,24	82256	127012,5	0,041407	-0,62678	DOWN

V7BVR5	Uncharacterized protein	4,68	8213,908	8094,534	2	61,54	29439	56956	0,041431	-0,95212	DOWN
V7ANA4	Uncharacterized protein	7,67	10838,85	16790,8	6	54,55	44282,44	96507	0,041644	-1,1239	DOWN
T2DN95	UDP-glucuronic acid decarboxylase	7,35	38637,37	2727,871	15	59,36	41082,21	48363,52	0,042271	-0,23541	UNCHANGED
H6WQB3	Allantoinase	5,4	56987,78	777,7686	9	24,8	32671,33	41000,11	0,042413	-0,3276	UNCHANGED
V7BVE8	Epimerase domain-containing protein	6,19	36320,62	1126,3	8	30,15	12388,7	23512,34	0,043263	-0,92439	DOWN
V7C8Z4	Uncharacterized protein	4,64	64921,91	1933,098	18	49,39	81002,78	130506,6	0,043928	-0,68808	DOWN
V7BRD9	Uncharacterized protein	5,01	73836,62	741,4806	8	23,66	25064,38	30046,08	0,044135	-0,26154	UNCHANGED
V7BLU1	Uncharacterized protein	5,83	41936,84	1370,708	9	28,09	37797	56661,11	0,04488	-0,58409	UNCHANGED
V7BIJ9	Cysteine synthase	5,01	34742,11	1595,769	8	37,96	54033,89	62245,33	0,044913	-0,2041	UNCHANGED
V7AGS2	Uncharacterized protein	10,32	20900,23	4490,731	5	35,91	68426	77240	0,044984	-0,1748	UNCHANGED
V5N8E1	Superoxide dismutase [Cu-Zn]	5,57	15300,68	5797,061	3	43,42	47241,39	68765,28	0,045305	-0,54163	UNCHANGED
V7ATZ7	Tubulin beta chain	4,6	51200,31	1926,633	16	57,02	12130,24	14084,54	0,04568	-0,2155	UNCHANGED
V7C961	Uncharacterized protein	5,94	48066	2421,943	15	40,95	68913,1	77833,1	0,045909	-0,17561	UNCHANGED
V7AER6	Uncharacterized protein	6,35	28479,05	5959,895	10	54,72	105750,6	126654,4	0,0463	-0,26023	UNCHANGED
V7BLB9	Malate dehydrogenase	5,48	35749,83	10388,07	14	55,12	176308,6	210590,3	0,047059	-0,25634	UNCHANGED
V7CRX8	UDP-glucose 4-epimerase	8,08	39443,99	31308,38	25	84,29	360812,3	409881,7	0,04835	-0,18396	UNCHANGED
V7AIB2	Glyco_hydro_18 domain-containing protein	5,27	35586,88	28591,46	8	34,27	914195,4	890348,1	0,049214	0,038133	UNCHANGED
V7CQB2	Malic enzyme	6,12	72333,23	1392,483	16	42,62	70816,11	84451,89	0,049476	-0,25405	UNCHANGED
V7ARA3	PCI domain-containing protein	9,02	56060,91	557,1169	4	11,91	14710,78	22330,56	0,050005	-0,60215	UNCHANGED
V7D1M3	CS domain-containing protein	4,2	20665,78	1062,654	3	26,34	24941,44	29071,11	0,05059	-0,22104	UNCHANGED
T2DLR9	Alcohol dehydrogenase 1	6,39	42210,09	22322,85	20	73,42	616044,7	776326,3	0,050819	-0,33363	UNCHANGED
V7BGZ2	Protein disulfide-isomerase	5,29	40583,85	6009,028	15	54,55	127468,1	172497,4	0,052022	-0,43644	UNCHANGED
V7AWT8	Uncharacterized protein	9,68	30460,5	1285,087	5	28,62	40204,44	46073,22	0,052837	-0,19657	UNCHANGED
V7AE69	40S ribosomal protein S25	11,04	11969,05	4307,01	3	46,3	60272	57008,89	0,05329	0,080301	UNCHANGED
V7AFT3	Poly [ADP-ribose] polymerase	5,31	92226,13	9816,464	46	77,71	166580,6	152442	0,053851	0,12796	UNCHANGED
V7BJ41	AMP-binding domain-containing protein	7,94	80126,99	811,8121	9	20,89	52290,56	44706,33	0,054958	0,226071	UNCHANGED
V7BH19	Epimerase domain-containing protein	6,09	43066,91	809,7251	3	10,11	7223,667	20025,94	0,057641	-1,47107	UNCHANGED
V7B074	Importin subunit alpha	4,97	59000,79	954,7026	7	20,04	15836,3	14167,56	0,058278	0,160644	UNCHANGED

B3W6M4	Trypsin/chymotrypsin inhibitor	5,88	13943,39	15327,15	2	39,17	188458,7	18957	0,058773	3,313446	UNCHANGED
V7ASP4	Ornithine transcarbamylase	8,08	40623,83	566,8577	3	12,85	25864,33	33396,39	0,058825	-0,36873	UNCHANGED
V7AJR1	Annexin	6,69	35763,57	5679,928	15	61,34	105318,9	120242,6	0,05983	-0,19118	UNCHANGED
V7C3R6	Lectin_legB domain-containing protein	4,86	26962,9	28307,19	11	67,21	514184,3	641592,1	0,059929	-0,31937	UNCHANGED
V7AS97	Lipoxygenase	6,45	95742,94	2952,418	9	15,37	110675	131095,6	0,060104	-0,24429	UNCHANGED
V7BH64	Fructose-bisphosphate aldolase	7,84	38803,21	2444,375	6	22,41	49495,04	27710,74	0,060772	0,836839	UNCHANGED
V7B8A1	Uncharacterized protein	10,35	28341,2	5703,832	10	48,15	200328,6	181570,6	0,062693	0,141838	UNCHANGED
V7C356	Glutamate decarboxylase	5,37	56683,08	1371,004	11	38,08	42583,44	39597,67	0,062788	0,104877	UNCHANGED
V7CPK9	Peroxiredoxin	9,06	28503,9	14831,28	13	53,15	275341,4	290978,9	0,0632	-0,07969	UNCHANGED
V7CJP2	Cysteine synthase	5,54	34370,91	2435,85	15	68,31	45285,11	57952	0,064453	-0,35582	UNCHANGED
V7BWU7	Uncharacterized protein	4,59	19513,69	3625,753	7	61,7	29059,33	39443,89	0,064711	-0,4408	UNCHANGED
V7AUA3	PCI domain-containing protein	6,03	47211,53	703,9063	5	16,11	40278,39	49382,67	0,065072	-0,294	UNCHANGED
V7AS22	Uncharacterized protein	9,92	21907,4	9323,563	12	66,32	133372,9	90329,8	0,067501	0,562192	UNCHANGED
V7CG35	60S ribosomal protein L13	11,42	23714,74	1054,161	7	38,83	20076,09	15519,03	0,068146	0,37144	UNCHANGED
V7BPV5	Peptidase A1 domain-containing protein	7,25	47011,46	10162,64	14	48,94	523125,6	404097,3	0,070554	0,372454	UNCHANGED
V7D092	Uncharacterized protein	6,67	27951,72	22980,23	18	75,52	315351	333935,3	0,07354	-0,08261	UNCHANGED
V7C6J2	Proteasome subunit beta	7,15	21381,17	2064,656	2	22,68	32313,67	40674,33	0,073673	-0,33197	UNCHANGED
V7ATG9	Lipoxygenase	6,27	96287,78	3233,847	18	26,11	127509,6	186105,9	0,074257	-0,54552	UNCHANGED
V7BWP9	Phytocyanin domain-containing protein	8,97	46651,19	864,1341	4	12,61	49690,5	37562	0,075484	0,403696	UNCHANGED
V7AYI0	UDP-arabinopyranose mutase	5,91	42585,74	4698,693	8	25,61	3447,89	4455,505	0,076265	-0,36988	UNCHANGED
C8YZ71	RACK1	7,61	36029,52	6808,942	15	64,81	210307,9	230284,4	0,077171	-0,13091	UNCHANGED
V7CDF5	Ribosomal_L2_C domain-containing protein	11,13	28401,56	2643,223	4	23,08	45810,74	54678,78	0,077687	-0,2553	UNCHANGED
V7CNS9	Uncharacterized protein	5,13	94181,48	525,6806	6	13,46	19584,11	21471,22	0,080462	-0,13272	UNCHANGED
V7CGA9	EGF-like domain-containing protein	5,39	71073,66	1189,804	8	23,64	21946,22	28387,06	0,082104	-0,37126	UNCHANGED
V7AZ89	Proteasome subunit beta	5,96	29287,15	1794,841	8	54,04	38190,89	42861,56	0,083072	-0,16646	UNCHANGED
V7CXJ8	Uncharacterized protein	4,77	16088,95	2474,249	3	24,66	35295,67	66540,11	0,083596	-0,91473	UNCHANGED
V7AV39	Uncharacterized protein	5,73	41685,36	6056,847	13	49,47	97862,08	54572,85	0,084659	0,842566	UNCHANGED
V7BE66	Uncharacterized protein	5,88	27105,79	15236,6	11	56,96	207984,9	243611,1	0,085931	-0,2281	UNCHANGED

V7BJF1	Uncharacterized protein	10,85	17161,28	6056,537	5	54,3	63227,67	73828,22	0,086207	-0,22362	UNCHANGED
V7AJW8	CCT-beta	5,31	57635,42	726,9784	4	14,61	36701	42868	0,087737	-0,22408	UNCHANGED
V7CZM8	Ribos_L4_asso_C domain-containing protein	11,04	44494,67	1829,115	13	47,01	68042,33	58828,22	0,089075	0,209924	UNCHANGED
V7AX48	Aspartate transaminase	8,21	45175,72	622,2706	6	23,66	28321,22	32557	0,089111	-0,20108	UNCHANGED
V7CIY2	Uncharacterized protein	6,85	45307,19	642,0173	6	26,96	22353,11	25295,89	0,089482	-0,17843	UNCHANGED
V7BFA0	Ribos_L4_asso_C domain-containing protein	10,93	44709,81	5510,703	18	57,04	118862,9	112407	0,091072	0,080566	UNCHANGED
V7AED4	PfkB domain-containing protein	4,73	35709,71	3544,501	8	29,09	18180,88	22932,84	0,091547	-0,33499	UNCHANGED
V7C6L3	PPDK_N domain-containing protein	6,31	164226	3934,179	51	48,42	107856,9	138786	0,094138	-0,36374	UNCHANGED
V7C9M2	CYTOSOL_AP domain-containing protein	6,14	59990,6	837,1022	8	17,89	22011,43	25630,72	0,094168	-0,21962	UNCHANGED
V7D288	Serine hydroxymethyltransferase	7,25	52128,23	5666,114	24	79,19	329534,4	297897,6	0,094271	0,145612	UNCHANGED
V7C0V0	Allene-oxide cyclase	8,95	27990,51	606,7093	3	16,21	9064,944	9684,556	0,095615	-0,09539	UNCHANGED
V7BXI4	Uncharacterized protein	9,79	14643,87	7458,796	5	38,85	53301,11	101092,7	0,095876	-0,92344	UNCHANGED
V7BF97	Tubulin alpha chain	4,78	50077,21	1860,557	12	37,19	11532,35	15189,85	0,096741	-0,39742	UNCHANGED
V7CHR0	Uncharacterized protein (Fragment)	5,91	60802,81	1428,179	13	38,15	38734,11	45781,11	0,097481	-0,24115	UNCHANGED
O24320	Lipoxygenase	6,56	96592,86	3488,179	15	25,09	68739,65	79882,26	0,0996	-0,21673	UNCHANGED
V7CUP3	Ribosomal_L18_c domain-containing protein	9,38	34603,24	2968,398	8	46,67	72619,44	60017,33	0,103323	0,274977	UNCHANGED
V7BJ61	Meth_synt_2 domain-containing protein	9,13	47169,3	4854,611	7	27,18	6367,896	5482,974	0,103674	0,215858	UNCHANGED
V7AP76	40S ribosomal protein SA	4,93	34059,62	4724,417	12	51,3	113867	133871,9	0,103869	-0,2335	UNCHANGED
V7AL37	Usp domain-containing protein	6,37	18112,95	5733,166	12	85,19	153021,3	194222	0,105125	-0,34397	UNCHANGED
T2DPE5	Nucleoside diphosphate kinase	7,75	16552,02	18330,77	9	65,77	191128,7	214071,9	0,106623	-0,16355	UNCHANGED
V7BHL0	Isocitrate dehydrogenase [NAD] subunit, mitochondrial	6,65	39774,36	500,2437	3	16,43	7800	9840,556	0,10773	-0,33527	UNCHANGED
V7AW68	SHSP domain-containing protein	5,87	17640,32	9325,417	7	59,62	195982,1	181217	0,108081	0,113004	UNCHANGED
V7CP66	Uncharacterized protein	4,64	61647,17	5660,466	24	67,47	79378,21	89304,17	0,110614	-0,16998	UNCHANGED
V7CGM7	PEP_hydrolase domain-containing protein	5,96	81114,22	705,6011	3	7,34	9669,889	11677,67	0,114414	-0,27218	UNCHANGED
T2DM56	GTP-binding nuclear protein	6,41	25447,74	7204,154	10	64,25	199199,9	189469,7	0,115341	0,07225	UNCHANGED
V7CIB7	Aconitate hydratase	5,6	98941,48	4946,667	30	53,27	128779,7	143415,9	0,116887	-0,1553	UNCHANGED
V7ALQ5	Malate dehydrogenase	5,8	36263,54	5398,774	6	19,22	56431,94	61729,88	0,118974	-0,12946	UNCHANGED
V7BN55	Uncharacterized protein	8,79	33697,73	27659,69	14	48,22	555961,3	485869,7	0,122791	0,194415	UNCHANGED

V7BQN7	Proline iminopeptidase	5,79	44453,29	806,8599	8	38,87	25868,89	29685,22	0,124374	-0,19853	UNCHANGED
V7BP31	Lactoylglutathione lyase	5,57	32464,9	1125,305	5	19,51	49649,67	41376,11	0,124933	0,262986	UNCHANGED
V7AFP4	Uncharacterized protein (Fragment)	9,66	50892,1	1088,109	5	14,44	18636,11	21567,78	0,12626	-0,21078	UNCHANGED
V7C6C0	3-hydroxyacyl-CoA dehydrogenase	9,54	78408,52	642,5912	6	12,98	153639	76290	0,126295	1,009979	UNCHANGED
V7ATN3	SERPIN domain-containing protein	8,41	46867,02	904,9645	5	15,57	16837,22	19467,11	0,127402	-0,20938	UNCHANGED
V7BTW4	Knot1 domain-containing protein	7,45	9101,167	7259,229	2	32	54862,67	34788,5	0,128375	0,657214	UNCHANGED
V7B3U0	Diadenosine tetraphosphate synthetase	6,69	81627,05	671,7346	11	20,58	34590,44	38004,56	0,13129	-0,1358	UNCHANGED
V7BK03	Glycine cleavage system H protein	4,98	20108,28	640,4825	2	21,23	16506	17876,5	0,13176	-0,11507	UNCHANGED
V7C3G7	CCT-theta	5,02	58997,14	312,1165	2	4,04	13017	10431,5	0,135535	0,31945	UNCHANGED
V7AML9	Ribosomal_S13_N domain-containing protein	10,81	17208,24	5870,087	7	56,29	129021,2	122386,9	0,138039	0,076159	UNCHANGED
U5U2I1	40S ribosomal protein S3a	10,28	29859,62	3905,678	11	57,09	67370,75	61033,35	0,139495	0,142525	UNCHANGED
V7CAV9	Eukaryotic translation initiation factor 5A	5,54	17727,84	2022,689	6	59,38	21944,67	24042,78	0,140105	-0,13173	UNCHANGED
V7AKI4	Uncharacterized protein	8,22	25471,02	4389,294	10	60,62	38564,33	33554,56	0,144788	0,200759	UNCHANGED
V7BPU4	Uncharacterized protein	5,22	32131,46	11899,97	6	30,14	83064,91	67437,49	0,145639	0,300688	UNCHANGED
V7D276	Protein transport protein SEC23	5,65	85661,3	1070,875	10	25,65	19626,67	22914,33	0,147264	-0,22344	UNCHANGED
V7BWC0	NAD(P)-bd_dom domain-containing protein	7,34	39494,15	1262,254	10	43,27	6334,619	9257,724	0,147652	-0,5474	UNCHANGED
V7C0X0	Proteasome subunit alpha type	5,48	27522,24	2395,329	9	44,18	31746,44	34824,56	0,148096	-0,13351	UNCHANGED
V7BF75	Uncharacterized protein	10,6	44813,16	6310,427	18	49,87	79695,92	86074,78	0,148466	-0,11108	UNCHANGED
V7ARZ1	SHSP domain-containing protein	8,24	17761,23	1453,642	2	23,9	30044,83	25649	0,149366	0,228214	UNCHANGED
B3KYI2	Asparagine synthetase [glutamine-hydrolyzing]	6,17	65249,88	387,3882	3	9,65	7090,333	6320,667	0,149763	0,165777	UNCHANGED
V7BX14	Lipoxygenase	5,91	97587,98	37432	52	69,19	1118859	1283597	0,149907	-0,19816	UNCHANGED
V7AWJ1	Ribosomal_L18e/L15P domain-containing protein	10,94	16626,64	890,7878	4	31,29	5751,778	4407,273	0,152207	0,384122	UNCHANGED
V7ANJ8	WHy domain-containing protein	4,95	16742,38	47265,33	14	80,92	480782,1	441450,3	0,152707	0,123132	UNCHANGED
V7CWI7	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2	6,25	75050,72	528,1759	6	14,53	23786,33	21030,67	0,154247	0,177638	UNCHANGED
V7AD31	Purple acid phosphatase	9,28	49196,6	860,002	7	23,08	25893,91	21982,4	0,159222	0,236264	UNCHANGED
V7CTG3	Tubulin beta chain	4,55	51090,19	1929,205	15	56,35	19750,06	21931,62	0,160988	-0,15116	UNCHANGED
V7CZ55	Uncharacterized protein	4,91	71748,17	6657,9	23	56,37	2779,262	3201,78	0,161455	-0,20417	UNCHANGED
V7B8C8	Uncharacterized protein	11,03	15776,64	1949,849	6	46,62	31935,45	35771,62	0,161864	-0,16366	UNCHANGED

V7BF33	AAA domain-containing protein	5,83	49529,06	501,4025	5	23,7	18757,22	21192	0,162932	-0,17607	UNCHANGED
V7CBY7	Uncharacterized protein	6,74	53276,16	820,223	8	36,6	27268,56	32888,56	0,164535	-0,27035	UNCHANGED
V7CFL4	Uncharacterized protein (Fragment)	4,75	42741,26	574,1166	2	12,76	10899,5	8892,833	0,16998	0,293547	UNCHANGED
V7AXD8	Xylulose kinase	5,73	61883,21	1139,973	12	29,03	32033,67	35594,67	0,170242	-0,15207	UNCHANGED
V7BYQ9	14_3_3 domain-containing protein	4,6	29676,27	1799,458	7	30,65	116072,3	44808,65	0,170843	1,373175	UNCHANGED
V7BKZ2	Pyruvate kinase	6,7	58168,05	2626,647	11	40,04	40107,31	38201,38	0,171961	0,070241	UNCHANGED
V7CAM9	Uncharacterized protein (Fragment)	4,54	40144,56	1752,022	7	23,31	24229,2	29582,87	0,173684	-0,28801	UNCHANGED
V7C9P5	Uncharacterized protein	5,08	71540,1	15543,05	35	73,04	267912,4	254643,7	0,174746	0,073281	UNCHANGED
V7CL25	3'(2'),5'-bisphosphate nucleotidase	8,1	44995,96	586,0258	3	10,82	11829,44	13299,67	0,178528	-0,16901	UNCHANGED
V7BUR9	Uncharacterized protein	6,83	55467,77	8551,207	23	59,28	238916,6	158320,7	0,179401	0,593657	UNCHANGED
V7AGN9	Usp domain-containing protein	7,37	18185,91	7744,335	12	82,32	102359,6	113460	0,179466	-0,14854	UNCHANGED
V7CJZ8	S10_plectin domain-containing protein	10,02	19905,48	3538,589	5	29,05	55931	58824,89	0,182867	-0,07278	UNCHANGED
V7C654	Lectin_legB domain-containing protein	4,99	30262,09	37242,65	13	58,78	1173421	1011567	0,184724	0,214129	UNCHANGED
V7CTC1	Uncharacterized protein	5,5	23826,99	1232,3	5	28,3	15685,44	14019,17	0,185206	0,162026	UNCHANGED
V7AL10	Uncharacterized protein	5,65	22834,37	640,9722	4	23,67	9430,667	11872,06	0,186684	-0,33214	UNCHANGED
V7AEU1	50S ribosomal protein L23, chloroplastic	10,69	17263,38	2482,019	4	28,76	33288,78	41981	0,188749	-0,3347	UNCHANGED
V7C4I2	HATPase_c domain-containing protein	4,73	80867,68	1553,202	17	37,86	25071,73	23761,99	0,188914	0,077406	UNCHANGED
V7ATJ0	Fe2OG dioxygenase domain-containing protein	5,3	40831,48	2484,347	9	48,72	59860,89	44227,56	0,190887	0,436668	UNCHANGED
V7AZR5	Uncharacterized protein	6,01	41891,88	1372,168	6	26,25	95717,05	67992,4	0,192211	0,493402	UNCHANGED
V7BST4	Epimerase domain-containing protein	5,51	36047,12	1182,633	9	32,92	17407,83	25007,32	0,195856	-0,52261	UNCHANGED
V7BVP3	Uncharacterized protein	4,17	11268,68	1604,351	4	73,21	15961,78	18347,67	0,199778	-0,20098	UNCHANGED
V7C8N0	Uncharacterized protein	9,69	22753,89	2478,571	9	43,9	50129,03	40289,99	0,200907	0,315225	UNCHANGED
T2DNW6	CHP-rich zinc finger protein	5,79	26655,91	1218,908	4	22,13	51376,83	44416,56	0,201444	0,21002	UNCHANGED
V7BBE6	Ferritin	6,16	29626,73	2983,008	2	10,34	2450,366	1163,878	0,202416	1,074058	UNCHANGED
V7AM91	Ribosomal_L16 domain-containing protein	10,92	25471,61	5059,732	9	46,15	80687,82	89176,94	0,203556	-0,14432	UNCHANGED
V7CFG3	Uncharacterized protein	8,75	14135,57	633,1183	3	31,5	9723,556	13136,22	0,209071	-0,43399	UNCHANGED
V7CY37	Uncharacterized protein	10,94	18719,75	1941,423	5	36,59	46984,33	37891,22	0,209781	0,310316	UNCHANGED
V7CB78	Aldedh domain-containing protein	7,7	58900,29	535,4132	4	11,21	12056,26	13869,54	0,210912	-0,20214	UNCHANGED

V7C855	Transketolase	6,41	79216,84	611,6485	4	9,18	20062,11	27478,89	0,211528	-0,45385	UNCHANGED
V7CSW5	Uncharacterized protein	10,55	16984,87	4576,346	5	36,05	183859,8	279160,4	0,214019	-0,60249	UNCHANGED
V7C6Y1	Endoplasmic reticulum transmembrane protein	8,9	15229,89	3077,001	2	20,93	34595,33	28983,33	0,22053	0,255354	UNCHANGED
V7C7B8	60S acidic ribosomal protein P0	5,05	34240,48	4154,046	9	61,88	94320,56	119888,2	0,22059	-0,34605	UNCHANGED
V7C4I9	Uncharacterized protein	6,18	141378,5	9128,183	52	69,36	370434,2	355491,1	0,220965	0,059404	UNCHANGED
V7AEA1	Uncharacterized protein	4,65	40747,28	5083,055	14	57,07	115907,4	122963	0,222131	-0,08525	UNCHANGED
V7C9Y3	40S ribosomal protein S7	10,19	22125,61	722,0435	3	24,08	15671,11	18238,02	0,222255	-0,21884	UNCHANGED
V7BZF7	Lipoxygenase	6,23	96241,65	3076,421	9	13,9	108719,1	193030,2	0,230719	-0,82822	UNCHANGED
V7AX90	Aminopeptidase	5,06	98974,31	2508,743	33	52,92	83674,11	102987,2	0,231675	-0,29961	UNCHANGED
V7CX68	5-methyltetrahydropteroyltriglutamate homocysteine S-methyltransferase	5,92	84254,35	21669,93	39	68,68	276804,6	314341,6	0,237346	-0,18347	UNCHANGED
V7BES3	Uncharacterized protein	9,86	13594,56	2244,413	4	40,34	35597,76	30813,78	0,241943	0,208211	UNCHANGED
V7CFI9	Cupin type-1 domain-containing protein	4,81	85229,95	24050,91	44	61,21	489716,8	450180,9	0,24232	0,121443	UNCHANGED
V7CRB4	HATPase_c domain-containing protein	4,68	93897,49	3926,762	32	47,86	222537,4	179955,2	0,242457	0,30641	UNCHANGED
V7CRB8	Proteasome subunit alpha type	5,08	30912,54	1055,4	5	24,64	16646,33	18010,78	0,245318	-0,11366	UNCHANGED
V7BPM8	Ribosomal_L18e/L15P domain-containing protein	11,6	21110,91	6851,773	5	33,16	152780,4	144089,7	0,247091	0,084493	UNCHANGED
V7B1U2	60S ribosomal protein L27	10,81	15714,69	5146,6	4	31,85	97617,72	109570,4	0,247314	-0,16664	UNCHANGED
V7BL51	Uncharacterized protein	4,13	11319,68	3759,46	4	78,07	24149	26863,11	0,248796	-0,15366	UNCHANGED
V7AWN2	Uncharacterized protein	7,13	59132,08	14131,82	30	60,35	631523,4	665982,1	0,250087	-0,07665	UNCHANGED
V7CUY9	Tubulin alpha chain	4,83	50121,4	2178,751	16	55,36	9044,081	11629,49	0,252626	-0,36274	UNCHANGED
V7CQL6	Uncharacterized protein	8,72	19105,05	1948,147	8	75	12230,89	13382,78	0,253459	-0,12985	UNCHANGED
V7CFY6	Proteasome subunit alpha type	7,33	27291,9	747,6049	4	23,69	29798,67	28149,44	0,257618	0,082141	UNCHANGED
V7D0N1	Uncharacterized protein	5,42	96408	446,3756	4	6,65	12442,11	10438,33	0,259464	0,25334	UNCHANGED
V7AZN7	Uncharacterized protein	10,24	28627,57	1985,207	5	34,43	4291,497	5022,298	0,260356	-0,22687	UNCHANGED
V7BDU7	Proteasome subunit beta	6,07	22695,91	1349,056	5	33,33	27597,56	32631,22	0,270806	-0,24171	UNCHANGED
V7BXI7	Tr-type G domain-containing protein	5,64	93560,14	8630,787	41	66,55	209795,6	198760,6	0,278761	0,077953	UNCHANGED
V7BAM9	Glutamine synthetase	6,36	39687,87	4021,598	14	61,8	62303,22	66989,78	0,278766	-0,10463	UNCHANGED
V7B3B5	6-phosphogluconate dehydrogenase, decarboxylating	5,44	53529,11	1314,808	13	40,58	47493,11	60356,67	0,283993	-0,34579	UNCHANGED

V7BM57	Uncharacterized protein	4,95	21262,13	8409,571	3	26,94	108924,2	99247,33	0,288911	0,134224	UNCHANGED
V7AS43	Cytochrome b5 heme-binding domain- containing protein	5,16	15200,28	5263,747	6	69,4	34119,89	32007,44	0,292511	0,092205	UNCHANGED
V7CUH6	Aspartyl-tRNA synthetase	5,92	60934,55	486,1819	3	7,95	10207,5	14296,67	0,300285	-0,48605	UNCHANGED
V7ASA9	Lipoxygenase	5,99	94810,07	2124,619	8	8,74	7044,329	5574,614	0,30167	0,33759	UNCHANGED
V7B774	40S ribosomal protein S4	10,73	29905,94	3533,078	12	55,68	64605,34	63042,72	0,303143	0,035324	UNCHANGED
V7B696	Glutathione transferase	5,79	24845,67	7298,634	7	41,86	139750	132605,1	0,305294	0,075712	UNCHANGED
Q69F96	UDP-arabinopyranose mutase	5,75	40763,76	1812,561	11	32,86	2368,679	2891,673	0,306292	-0,28782	UNCHANGED
V7AWM4	Glutaredoxin domain-containing protein	6,49	13706,59	16705,73	10	64,52	117141	105139,8	0,30648	0,155937	UNCHANGED
V7CRX4	Reticulon-like protein	9,2	28649,22	4523,396	5	24,02	160143,9	139765,6	0,318782	0,19636	UNCHANGED
V7BXL6	Ig-like domain-containing protein	4,9	96428,8	1127,669	18	33,41	32415,11	31045,33	0,321432	0,06229	UNCHANGED
V7BM69	Uncharacterized protein	5,88	108800,5	358,4508	3	3,87	17546,89	18498,22	0,322638	-0,07617	UNCHANGED
V7BH14	Carboxypeptidase	4,98	55932,07	863,6586	4	14,75	7999,833	58147,89	0,324611	-2,86168	UNCHANGED
V7B5T3	Ferritin	5,56	28418,01	4549,485	11	58,66	39220,44	34771,78	0,326461	0,173689	UNCHANGED
V7BG07	40S ribosomal protein S24	11,09	15764,59	10529,61	3	26,28	89746,22	101808,9	0,326527	-0,18194	UNCHANGED
V7C2S1	Uncharacterized protein (Fragment)	4,63	23207,21	1097,953	4	36,97	15629,83	12315,22	0,332474	0,34386	UNCHANGED
V7C790	Uncharacterized protein	6,37	26379,7	23069,16	11	72,59	305307,8	266304,9	0,332951	0,197185	UNCHANGED
V7C080	Elongation factor 1-alpha	9,39	49747,45	13852,93	21	61,3	74895,07	67223,5	0,339143	0,155905	UNCHANGED
V7CD28	Xylose isomerase	5,81	54297,59	2838,719	19	56,16	59658	63706,33	0,350265	-0,09472	UNCHANGED
V7AZA2	Gp_dh_C domain-containing protein (Fragment)	5,57	23539,9	31953,27	14	83,49	318974,5	301121,3	0,361083	0,083096	UNCHANGED
V7ARW1	AAA domain-containing protein	6,07	48210,37	645,0236	6	23,24	12054,11	15881,67	0,36117	-0,39784	UNCHANGED
V7CQW0	Uncharacterized protein	5,17	54238,62	384,6479	2	6,12	10099,67	11502	0,365053	-0,18758	UNCHANGED
V7B5K8	Uncharacterized protein	5,27	39272,91	1771,389	12	47,14	65750,67	62244,67	0,370542	0,079055	UNCHANGED
V7CQ94	Uncharacterized protein	6,84	93506,33	922,3627	2	2,65	492529,3	632060,3	0,373335	-0,35985	UNCHANGED
V7AVC2	40S ribosomal protein S26	11,46	15252,52	3850,256	3	33,33	71974,17	59830,17	0,379588	0,266606	UNCHANGED
V7CTS0	Starch synthase, chloroplastic/amyloplastic (Fragment)	6,97	63644,78	1880,064	16	39,61	41006,44	37563,67	0,384505	0,126513	UNCHANGED
V7C659	Glutaredoxin-dependent peroxiredoxin	5,27	17452,1	10727,91	7	73,46	149034,2	156435,3	0,387047	-0,06992	UNCHANGED
V7B2X0	Peptidase_M24 domain-containing protein	6,62	43576,75	1455,314	7	22,7	66312,56	50075,11	0,388623	0,405188	UNCHANGED
V7AQ77	Uncharacterized protein	5,23	18375,94	4804,5	6	42,26	89359,78	82878,44	0,391412	0,108629	UNCHANGED

V7ALW3	PKS_ER domain-containing protein	6,27	34787,93	758,1653	2	13,89	25647,33	29098,5	0,391484	-0,18214	UNCHANGED
V7AZE6	Superoxide dismutase	8,76	26575,28	3828,694	9	57,32	53252,44	62282	0,391501	-0,22597	UNCHANGED
V7BME2	Sucrose-phosphate phosphatase	5,63	46935,21	5083,938	21	68,27	132213	84010,67	0,393315	0,65422	UNCHANGED
V7BZD8	Uncharacterized protein	5,23	55261,76	644,8102	4	15,35	13629,78	13025,44	0,394018	0,065429	UNCHANGED
V7C2M9	Uncharacterized protein	4,21	23815,81	1792,976	5	37,38	53872,56	45247,44	0,395814	0,251714	UNCHANGED
V7AZC9	Protein-methionine-S-oxide reductase	5,42	22277,57	5480,145	7	42,35	74358,22	67923,22	0,40287	0,130587	UNCHANGED
V7C610	Serine hydroxymethyltransferase	7,25	52219,41	4226,649	17	50,32	19183,4	20222,12	0,404048	-0,07608	UNCHANGED
V7C8A5	TENA_THI-4 domain-containing protein	4,92	26503,08	15199,87	14	58,08	191950,1	203204,7	0,40417	-0,0822	UNCHANGED
V7AU58	Uncharacterized protein	5,37	48584,54	526,8177	2	6,82	17469,5	18886,5	0,404723	-0,11252	UNCHANGED
V7CL73	Uncharacterized protein	11,17	12910,07	6100,704	5	53,57	53722,89	48515	0,406586	0,147106	UNCHANGED
V7BIW3	AAA domain-containing protein	4,79	47670,33	915,7445	7	25,3	311469,7	250057,9	0,410148	0,31683	UNCHANGED
V7BLG0	Ribosomal_L14e domain-containing protein	10,91	15385,26	2161,114	4	31,82	52391	53469,89	0,411994	-0,02941	UNCHANGED
V7B0N8	Uncharacterized protein	4,98	91609,75	4018,708	35	67,48	102608,1	88996,97	0,413309	0,205317	UNCHANGED
V7BIC9	Uncharacterized protein	6,5	78178,37	1961,444	16	34,58	59789,56	95842,33	0,427378	-0,68077	UNCHANGED
V7CSN7	40S ribosomal protein S7	10,19	22011,55	917,2016	3	24,08	43003,06	49679,15	0,427884	-0,2082	UNCHANGED
V7BPD9	AAA domain-containing protein	5,27	47256,81	840,8967	6	20,24	14327,91	19597,44	0,428061	-0,45184	UNCHANGED
V7BCC1	Uncharacterized protein	5,85	42018,99	3323,646	18	71,99	77985,67	80103,78	0,431027	-0,03866	UNCHANGED
V7C8C7	Adenosylhomocysteinase	5,5	53787,46	10086,48	25	71,13	174363,1	181814,4	0,432971	-0,06037	UNCHANGED
V7BZK0	Lipoxygenase	5,82	97830,02	36151,11	53	73,76	688262,1	735716	0,433806	-0,09619	UNCHANGED
V7BT55	KOW domain-containing protein	11,35	16668,44	2555,578	4	31,51	32086,22	25482	0,437817	0,332475	UNCHANGED
T2DPD6	Profilin	4,69	14291,25	3073,007	3	58,78	29314,12	33858,44	0,439551	-0,20792	UNCHANGED
V7BXX9	Methyltransf_2 domain-containing protein	5,42	39696,45	845,0504	5	22,03	25388,89	23460,11	0,441528	0,113987	UNCHANGED
V7CDF1	S4 RNA-binding domain-containing protein	10,7	23095,67	2281,823	6	25,38	32786,33	30823,33	0,441673	0,089072	UNCHANGED
V7AL93	Uncharacterized protein	5,04	51376,45	18086,35	22	66,74	442750,1	431634	0,446842	0,036684	UNCHANGED
V7C7L9	Uncharacterized protein (Fragment)	9,53	14059,15	1904,385	2	29,51	13132,28	10238	0,447671	0,359183	UNCHANGED
V7CE67	Ribosomal_S13_N domain-containing protein	10,81	17225,27	3392,01	7	52,32	32684,9	33746,29	0,448971	-0,0461	UNCHANGED
V7D2U5	Ribosomal protein	10,29	24746,32	2653,11	7	40,28	41026,02	38900,17	0,449277	0,076763	UNCHANGED
V7BAJ3	Ubiquitin receptor RAD23	4,5	42192,41	875,4161	5	22	19090,07	19881,8	0,467084	-0,05863	UNCHANGED

V7ADV6	60S ribosomal protein L7a	10,68	29617,13	1882,099	7	33,59	62648,78	60950,89	0,470029	0,039639	UNCHANGED
V7BG17	Uncharacterized protein	10,81	21531,25	2466,465	5	36,51	31061,89	35407	0,472744	-0,18889	UNCHANGED
V7B1G4	Uncharacterized protein	5,32	47173,89	3948,54	22	66,1	24734,34	26082,98	0,473853	-0,07659	UNCHANGED
V7CGW4	Ubiquitin	10,21	17851,69	11431,49	10	63,23	153224,9	159231,9	0,474166	-0,05548	UNCHANGED
V7BTS9	RNase H domain-containing protein	7,91	88866,4	4759,558	7	19,29	18988,58	14441,75	0,483145	0,394887	UNCHANGED
V7CGG2	Ribosomal protein L15	11,92	24276,08	1542,789	7	40,69	62227,78	55767,44	0,484632	0,158136	UNCHANGED
V7B315	Proteasome subunit alpha type	6,95	27440,17	3224,017	8	58	44830,29	47042,03	0,48508	-0,06948	UNCHANGED
V7C4J3	Cytochrome b5 heme-binding domain- containing protein	4,25	23448,35	1738,079	6	46,01	11892,11	11283,24	0,486611	0,075824	UNCHANGED
V7ALC4	Aldo_ket_red domain-containing protein	6,2	35063,02	2113,501	12	57,19	54226,56	65646,44	0,488622	-0,27572	UNCHANGED
V7BD53	Uncharacterized protein	10,06	19566,89	3182,427	3	23,33	76785	70045,56	0,489989	0,132531	UNCHANGED
V7CL08	Uncharacterized protein	8,6	29655,88	45024,68	15	79,1	755131,8	733810,1	0,490143	0,041322	UNCHANGED
V7BTL8	Glyceraldehyde-3-phosphate dehydrogenase	7,98	45313,39	4002,908	8	33,49	9587,348	10944,18	0,494134	-0,19096	UNCHANGED
V7BEQ4	Histone H2B	10,52	15059,67	4772,347	4	25,74	62779,33	67031,67	0,495324	-0,09455	UNCHANGED
V7CA00	Uncharacterized protein	6,74	32130,31	54681,73	18	86,39	712338,4	738140,8	0,500926	-0,05133	UNCHANGED
V7BUI1	PKS_ER domain-containing protein	6,25	34881,92	988,428	5	26,15	26542	28262,89	0,50291	-0,09063	UNCHANGED
V7CDT6	Uncharacterized protein	6,92	23592,88	1133,156	2	25,84	33790	24493	0,508633	0,464227	UNCHANGED
V7BF61	Uncharacterized protein	11	17624,57	6583,369	7	52,63	137494,6	134521,1	0,510923	0,031542	UNCHANGED
V7BW77	Proteasome subunit alpha type	5,59	25548,2	1236,62	7	38,72	23480,78	24155,11	0,515038	-0,04085	UNCHANGED
V7CWK7	Translocon-associated protein subunit beta	9,95	21057,33	1435,737	3	21,13	17602,67	14590,11	0,51703	0,270803	UNCHANGED
V7CQ18	Uncharacterized protein	4,89	73649,37	11294,6	36	56,01	196338,6	193020,4	0,517789	0,02459	UNCHANGED
V7CPW6	Uncharacterized protein	11,11	15720,52	3349	7	51,88	43268,79	46625,05	0,519711	-0,10778	UNCHANGED
V7AHB3	(1->3)-beta-glucan endohydrolase	9,11	35430,14	5980,693	11	67,17	91396,89	101498,1	0,526244	-0,15124	UNCHANGED
V7BJQ2	60S ribosomal protein L18a	10,68	19157,62	995,7676	2	30,19	18438,87	19568,92	0,533767	-0,08581	UNCHANGED
V7B7X5	Glutaredoxin domain-containing protein	6,93	11525,28	5887,681	8	92,52	46539,53	51796,37	0,534903	-0,15439	UNCHANGED
V7C7L0	Malic enzyme	5,76	65636,37	371,9703	3	8,29	10116,6	11559,5	0,541124	-0,19235	UNCHANGED
V7D036	Glyceraldehyde-3-phosphate dehydrogenase	7,35	37014,32	25202,15	15	58,82	122870,6	151474,3	0,550113	-0,30193	UNCHANGED
V7C6Z0	DHO_dh domain-containing protein	5,76	46566,1	434,4092	4	14,59	21488,44	20841,11	0,554028	0,044129	UNCHANGED
V7CAL4	Uncharacterized protein	5,75	55161,64	537,3809	2	8,05	9339,333	10697,5	0,555337	-0,19588	UNCHANGED

V7AFZ9	Uncharacterized protein	5,88	55519,61	3067,343	19	52,33	143892,4	139352,2	0,560809	0,046255	UNCHANGED
V7CE61	TPR_REGION domain-containing protein	4,73	44817,34	1942,768	11	36,21	35720,11	37823	0,569942	-0,08253	UNCHANGED
V7D1B8	Uncharacterized protein	6,52	22115,58	3538,451	9	64,77	33008,25	33786,12	0,57037	-0,0336	UNCHANGED
V7AMV2	Pectinesterase	7,59	54057,93	567,0467	5	13,79	17365,67	16160,39	0,581269	0,103776	UNCHANGED
V7BC72	Glucose-1-phosphate adenylyltransferase	6,22	56578,32	2883,338	18	59,61	124909,8	75359,91	0,585296	0,729017	UNCHANGED
V7CBH3	PCI domain-containing protein	5,17	44719,44	561,1783	6	21,76	16037	18624,44	0,599087	-0,21579	UNCHANGED
V5N947	Dienelactone hydrolase family protein	5,24	26394,85	616,6185	3	27,16	30134,83	33990	0,610476	-0,17368	UNCHANGED
V7C329	Alpha-1,4 glucan phosphorylase	5,08	111703,5	24886,86	46	67,01	414947,5	424454,9	0,613333	-0,03268	UNCHANGED
V7CJ52	Uncharacterized protein	5,65	59191,21	760,874	9	26,91	38154	67435,44	0,616041	-0,82167	UNCHANGED
V7CF33	ATP:AMP phosphotransferase	7,22	26838,02	1106,828	5	30,99	25989,11	26752,44	0,617956	-0,04176	UNCHANGED
V7AYA6	CYTOSOL_AP domain-containing protein	6,29	60520,15	1977,199	20	57,89	51922,11	57448,78	0,621565	-0,14593	UNCHANGED
V7BSC2	Obg-like ATPase 1	6,61	45008,52	805,4647	6	23,86	16315,11	16728,78	0,624355	-0,03612	UNCHANGED
V7CBI3	Malate synthase	5,85	64326,03	768,6497	10	32,27	25404,67	24371,56	0,638599	0,059895	UNCHANGED
V7ARM2	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1	7,16	69527,27	355,5004	2	6,15	8393,667	9288,167	0,652136	-0,14609	UNCHANGED
V7CZK7	Pyruvate kinase	7,86	58061,71	2064,838	8	27,13	3027,124	3284,502	0,652386	-0,11773	UNCHANGED
V7BHP9	Uncharacterized protein	5,37	61420,63	1368,174	9	20,52	13874,18	14076,92	0,653683	-0,02093	UNCHANGED
V7BGD2	TCTP domain-containing protein	4,44	19189,83	2144,232	3	27,38	26944,76	25810,58	0,654199	0,062042	UNCHANGED
V7BRM2	Fumarylacetoacetase	5,59	46243,45	2701,355	8	28,27	74670,56	88931,78	0,656261	-0,25216	UNCHANGED
V7B2Y0	Uncharacterized protein	6,26	69450,15	1731,353	2	6,97	3657,677	2725,817	0,658095	0,424239	UNCHANGED
V7BBP9	alpha-phaseolin	9,28	7845,671	77582,66	6	87,32	1138045	1034303	0,65921	0,137899	UNCHANGED
V7AX88	EF1_GNE domain-containing protein	4,21	24949,01	2809,712	5	39,13	12308,81	12982,63	0,661243	-0,07689	UNCHANGED
V7C245	UDP-arabinopyranose mutase	5,97	41359,38	3578	15	58,77	60621,64	63107,69	0,661847	-0,05798	UNCHANGED
T2DMF7	ARG10	5,28	25854,1	1259,189	3	21,1	18625,78	17550	0,665534	0,08583	UNCHANGED
V7BGG7	RanBD1 domain-containing protein	4,53	24679,27	2637,453	6	36,53	80119,22	81740,11	0,67517	-0,0289	UNCHANGED
V7AIR2	Bet_v_1 domain-containing protein	5,92	18541,98	24223,68	13	90,74	238079,7	245681,2	0,675584	-0,04534	UNCHANGED
V7CZ62	Eukaryotic translation initiation factor 3 subunit A	9,58	112187,6	528,3187	5	7,86	8139,111	9447,333	0,686209	-0,21504	UNCHANGED
V7C877	Polyadenylate-binding protein (Fragment)	8,83	61558,16	929,3088	6	22,46	28919,07	29496,72	0,687337	-0,02853	UNCHANGED
V7BH47	Uncharacterized protein	10,93	15167,88	5761,273	6	59,29	75899,11	71368,44	0,690459	0,088797	UNCHANGED

V7BET4	Fructose-bisphosphate aldolase	7,8	42048,88	1899,655	8	29,58	49195,89	48619,67	0,691713	0,016998	UNCHANGED
V7BJQ8	Uncharacterized protein	5,45	50730,2	20458,21	27	66,67	712698,2	721461,1	0,704579	-0,01763	UNCHANGED
V7AMH7	Aldo_ket_red domain-containing protein	6,09	35555,68	1197,827	7	38,73	11208,33	11554,33	0,717491	-0,04386	UNCHANGED
V7BMZ5	ATP citrate synthase	7,79	66403,03	560,1274	7	17,76	16328,11	17167,56	0,733647	-0,07233	UNCHANGED
V7BF74	Uncharacterized protein	11,42	12826,51	1454,704	3	26,36	64615	63273,56	0,735186	0,030266	UNCHANGED
V7CNI6	Uncharacterized protein	5,84	27555,99	1165,259	3	36,1	21645,44	22516,11	0,739804	-0,05689	UNCHANGED
V7BP33	Uncharacterized protein	5,01	30318,15	6209,41	4	29,18	128254,6	124253,7	0,742318	0,045722	UNCHANGED
V7C570	Uncharacterized protein	4,74	23718,05	5938,821	6	50,47	75334,67	77599,22	0,745151	-0,04273	UNCHANGED
V7CW28	Uncharacterized protein	5,16	41910,96	7688,756	17	58,89	85863,53	88637,48	0,7476	-0,04587	UNCHANGED
H2FH48	Glutathione transferase	5,12	25624,33	909,759	2	9,78	27311,67	26304,67	0,75516	0,054199	UNCHANGED
V7C3K9	Uncharacterized protein	5,42	29761,98	708,7366	4	26,28	19092,56	18169,17	0,755195	0,071518	UNCHANGED
V7BUJ2	40S ribosomal protein S8	10,79	24806,46	3160,855	9	47	72723,78	73534,67	0,760075	-0,016	UNCHANGED
V7BTA4	Meth_synt_1 domain-containing protein	6,21	49631,7	656,6952	4	11,75	5765,926	6212,613	0,766628	-0,10765	UNCHANGED
V7BBU8	Isocitrate dehydrogenase [NADP]	5,96	46316,84	1014,725	8	28,4	26752,11	26055,33	0,770232	0,038074	UNCHANGED
V7CL94	PCI domain-containing protein	4,79	31079,33	996,0444	4	23,6	22854,78	24145,33	0,777276	-0,07925	UNCHANGED
V7ADL7	Peptidyl-prolyl cis-trans isomerase	8,28	18401,83	28098,71	14	95,93	365828,3	375730,3	0,784446	-0,03853	UNCHANGED
V7CAP6	Pyrophosphatefructose 6-phosphate 1- phosphotransferase subunit beta	5,73	62679,29	396,0492	2	7,04	12398,67	12166,33	0,786407	0,027291	UNCHANGED
V7BR87	ADF-H domain-containing protein	5,66	16225,36	2525,13	3	55,4	26481,94	25167,56	0,790246	0,073444	UNCHANGED
V7AS03	Uncharacterized protein	4	11434,83	2522,347	2	30,36	48418,33	46609,17	0,793939	0,05494	UNCHANGED
V7B2J8	Aldedh domain-containing protein	5,1	46023,82	3075,397	15	50	112420,1	109249,2	0,795818	0,041277	UNCHANGED
V7AXG8	Lipocln_cytosolic_FA-bd_dom domain- containing protein	6,2	21459,36	7696,57	11	61,83	128250,9	126925,8	0,797796	0,014984	UNCHANGED
V7CMK3	Tubulin alpha chain	4,82	50299,61	2650,947	18	59,47	43583,53	46098,29	0,814381	-0,08093	UNCHANGED
V7AU48	Uncharacterized protein	5,19	47019,7	3750,56	22	64,41	11649,83	11390,05	0,822071	0,032535	UNCHANGED
V7AR96	RRM domain-containing protein	9,25	18052,08	872,0114	2	12,97	13167,13	13555,69	0,832085	-0,04196	UNCHANGED
V7CNA2	Ribosomal_L18e/L15P domain-containing protein	11,03	16676,6	2563,662	6	46,62	51000,1	50198,82	0,832901	0,022847	UNCHANGED
V7BAJ0	Proteasome subunit alpha type	4,5	26151,39	1579,496	5	35,02	32583,56	33592,78	0,835523	-0,04401	UNCHANGED
V7CDQ6	Uncharacterized protein	4,8	77881,03	539,3033	8	21,08	15042,89	14708,11	0,838586	0,03247	UNCHANGED

V7BT08 Uncharacterized protein 5,93 61057,25 1582,342 7 16,43 16502,98 16048,38 0,846516 0,040299 V7CBS6 Uncharacterized protein 6,63 22188,57 2986,137 7 52,33 9634,603 9581,232 0,871304 0,008014	UNCHANGED UNCHANGED UNCHANGED UNCHANGED UNCHANGED
V7CBS6 Uncharacterized protein 6,63 22188,57 2986,137 7 52,33 9634,603 9581,232 0,871304 0,008014	UNCHANGED UNCHANGED
1/21 11	UNCHANGED
V7D070 AD hydrologic 4 demain containing protein	
V7BQZ2 AB hydrolase-1 domain-containing protein 5,42 35909,89 1825,068 8 46,88 25362,78 24980 0,880524 0,021939	LINICHANICED
V7AK72 Cysteine proteinase inhibitor 6,58 27454,83 4523,435 10 56,91 131628,2 129016 0,881124 0,028919	UNCHANGED
V7BEF1 Cupin type-1 domain-containing protein 8,87 65371,71 1879,676 5 14,39 55649,89 52322,78 0,891319 0,08894	UNCHANGED
V7B8B1 SHSP domain-containing protein 5,73 17894,24 11087,81 4 31,45 53923,96 54109,63 0,894432 -0,00496	UNCHANGED
V7D015 Uncharacterized protein 10,72 20691,75 1327,108 3 18,78 51765,56 52715,33 0,897672 -0,02623	UNCHANGED
V7BHI2 Importin subunit alpha 5,02 59486,35 891,3606 4 11,28 5443,416 5532,307 0,899525 -0,02337	UNCHANGED
V7APJ9 Lipoxygenase 6,13 97123,66 2256,205 12 18,27 8224,005 8462,575 0,912158 -0,04126	UNCHANGED
	UNCHANGED
V7CRL2 PKS_ER domain-containing protein 7,75 46455,95 722,1172 4 13,89 29319 28749,33 0,93153 0,028307	UNCHANGED
V7BVE7 Uncharacterized protein 4,63 10653,03 17475,19 5 83,16 125107 126983 0,939859 -0,02147	UNCHANGED
	UNCHANGED
V7ATG3 Lipoxygenase 9,08 94297,27 1449,675 4 8,32 17978,62 17920,16 0,95656 0,004699	UNCHANGED
	UNCHANGED
V7C179 Formate dehydrogenase, mitochondrial 6,7 42604,43 29856,26 21 75,52 402746,7 403118,8 0,972521 -0,00133	UNCHANGED
V7BFL2 Cupin type-1 domain-containing protein 4,8 41297,42 67138,34 25 78,24 1555323 1551418 0,981996 0,003628 (Fragment)	UNCHANGED
	UNCHANGED
V7BK30 Aldo_ket_red domain-containing protein 7,71 36827,94 1783,572 10 53,35 50929,67 50821 0,986489 0,003082	UNCHANGED
T2DNF5 S-formylglutathione hydrolase 6,14 32250,39 2286,947 7 64,91 41970,22 42014,44 0,988828 -0,00152	UNCHANGED
V7AUU6 Aldehyde dehydrogenase 6,47 53742 3141,103 19 50 75733,56 75758,56 0,994518 -0,00048	UNCHANGED
V7CZE8 Clathrin heavy chain 5,13 194074,6 587,2808 17 17,28 - 1971,045	UNIQUE L8
T2DPN9 Actin 5,16 41854,83 7525,125 15 51,99 34901,27	UNIQUE L7
V7CL69 60S ribosomal protein L27 10,86 15719,66 3941,914 4 31,85 10563,79	UNIQUE L7
V7APJ1 Lipoxygenase 6,24 97670,16 4294,539 8 13,57 1792,249	UNIQUE L7
V7BFQ4 Elongation factor 1-alpha 9,41 49751,42 8749,729 14 47,1 3187,758	UNIQUE L7

V7BJJ6	Uncharacterized protein	8,97	22044,33	4605,514	9	44,83	28205,71	-	-	-	UNIQUE L7
V7BM23	Uncharacterized protein	5,74	98866,47	1170,371	3	6,03	1353,386	-	-	-	UNIQUE L7
V7BNU4	Alpha-1,4 glucan phosphorylase	5,92	96433,49	517,652	2	4,14	129265,3	-	-	-	UNIQUE L7
T2DP45	60S ribosomal protein L8-3-like protein	11,22	28493,65	2578,318	4	23,37	23768,01	-	-	-	UNIQUE L7
V7ANU1	40S ribosomal protein S6	11,15	28580,28	6434,051	5	39,36	-	1580,79	-	-	UNIQUE L8
V7AV25	Uncharacterized protein	5,11	25681,92	5666,209	6	30,97	-	3154,528	-	-	UNIQUE L8
V7B9B8	Glucose-1-phosphate adenylyltransferase	6,45	54337,66	2652,998	16	58,91	-	5687,249	-	-	UNIQUE L8
V7BIT4	Uncharacterized protein	4,89	25601,98	7936,803	5	12,83	-	6052,016	-	-	UNIQUE L8
V7BYN3	2-Hacid_dh_C domain-containing protein (Fragment)	6,75	27607,61	2074,957	2	24,19	-	52923,92	-	-	UNIQUE L8
V7CIN0	Uncharacterized protein	9,07	21004,21	2569,577	6	43,96	-	2039,47	-	-	UNIQUE L8